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Abstract

The construction of computer vision and robot control algorithms from train-
ing data is a challenging application for artificial neural networks. However, many
practical applications require an approach that is workable with a small number of
data examples. In this contribution, we describe results on the use of “Parametrized
Self-organizing Maps” (“PSOMs”) with this goal in mind. We report results that
demonstrate that a small number of labeled training images is sufficient to construct
PSOMs to identify the position of finger tips in images of 3D-hand shapes to within
an accuracy of only a few pixel locations.

Further we present a framework of hierarchical PSOMs that allows rapid “one-
shot-learning” after acquiring a number of “basis mappings” during a previous “in-
vestment learning stage”. We demonstrate the potential of this approach with the
task of constructing the position-dependent mapping from camera coordinates to the
work space coordinates of a Puma robot.

1 Introduction

Learning is one of the capabilities that make artificial neural networks a favorable approach
over a variety of more traditional approaches, such as e.g., fuzzy systems [18]. In particular,
in the domain of computer vision and robotics, many aspects of a task are costly to model
from first principles or even heuristically. Therefore, in these domains efficient learning
algorithms can greatly help to overcome the “knowledge acquisition bottleneck” and make
it easier to construct more flexible and more robust systems more rapidly.

However, for such applications an important issue is the availability of sufficient training
data. Whereas in vision it may be easy to gather large amounts at least of unlabeled data,
this is much less so in robotics, where each data item may require a time-consuming action
of the robot. If the data have to be labeled, which is usually required by the more powerful
supervised learning algorithms, then even in vision the acquisition of larger numbers of
training examples can be very costly.

Therefore, to make practical real-world applications in these domains, it is important
to go beyond most of the currently popular neural network models that usually require
thousands of training examples to provide useful performance, and to develop approaches
specifically suited to construct neural systems from small numbers of training examples.
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Recently, a computationally motivated variant of the self-organizing map ([5, 4, 14]), the
Parametrized Self-Organizing Map (“PSOM”) was proposed as a potentially useful scheme
for learning with particularly small numbers of training examples. The basic idea of a
PSOM is to sacrifice the generality of the original SOM by constructing the map manifold
from a restricted repertoire of basis manifolds. The choice of these basis manifolds can
be informed by a-priory knowledge about the task at hand. Consequently, the final map
manifold can be described by a small number of parameter values which can be determined
from a much smaller number of training examples than for the original SOM.

In [13], the feasibility of this approach was demonstrated for examples from the domain
of robotics, among them the learning of the inverse kinematics transform of a full 6-degrees
of freedom Puma robot with less than 800 examples and for a 3-DOF manipulator with 27
examples only (in both cases to within percent accuracy).

In this paper, we report more recent results about the use of PSOMs in the context of
visual learning. Specifically, we discuss the task to learn to extract the positions of object
features from monocular gray level images of the objects. As an example, we consider
images of an articulated hand of variable shape, taken from various view directions, with
the aim to identify the position of the finger tip in these images. As a second demonstration,
we describe how one-shot learning in the context of camera-calibration becomes possible
within a hierarchy of multiple PSOMs. In this framework, a preparatory or “investment
learning” stage is used to first construct a number of “basis” PSOMs. Using these pre-
learnt mappings then allows a second PSOM in a rapid learning phase to construct the
required camera mapping on the basis of one single training sample.

The plan of the paper is as follows. In Sect. 2, we give an outline of PSOMs. In Sect.
3, we consider their application to vision tasks and report results. In Sect. 4 we describe
the hierarchical approach for one-shot learning in the context of the camera calibration
task. Finally, Sect. 5 contains the discussion and an outlook on future work.

2 Parametrized Self-organizing Maps

The construction of a good data representation is often the decisive step in the solution of
a problem. This is particularly true for learning tasks, where the capability of generalizing
from a limited set of examples to novel instances forms the central aim. To support this
objective, a representation must serve two usually conflicting goals: it must provide a
representation of the data that maintains the similarity relationships among data elements
as faithfully as possible. Yet, it also should provide a compression onto the essential
variables and project out spurious or unimportant information.

The Karhunen-Loeve transform or principal component analysis (“PCA”, [3]) is the
well-known answer that results when looking for an optimal linear solution to these require-
ments. Its basic idea is to construct a low-dimensional, linear subspace that is oriented in
such a way in the original space that it captures as much of the data variation as possible.
The wide-spread use of this method indicates the importance of constructing good data
representations.
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The Kohonen self-organizing map (“SOM”) can be viewed as a non-linear extension
of principal component analysis [5, 4, 14]. It replaces the linear subspace of PCA by a
nonlinear manifold that can represent even very non-linear data distributions. The man-
ifold is constructed by an iterative learning procedure and can be viewed as a non-linear,
“topology-conserving map” of the original data space. The great success of this method
results from its capability to produce representations that yield a very good compromise
between efficient data compression and a sufficient faithful preservation of the underlying
“data topology” to support good generalization.

In the basic SOM-algorithm, the nonlinear
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Figure 1: The Kohonen, or “Self-
Organizing Map” (“SOM”) can be viewed
as an array (here 2D, m = 2) of formal
neurons. Each neuron has a reference vec-
tor wa attached, tessellating the embed-
ding input space X in discrete patches
(Voronoi cells).

map manifold is represented by a discrete approx-
imation, using a (m dimensional) lattice A of for-
mal neurons each labeled by an index a ∈ A, and
attached reference vectors wa [5, 4, 14], as illus-
trated in Fig. 1. The response of a SOM to an in-
put vector x is determined by the reference vector
wa∗ of the discrete “best-match” node a∗, where
a∗ is defined by a∗ = argmin ∥wa′ − x∥, where
a′ ∈ A. Originally, this approach has been moti-
vated by the desire to model the self-organization
of topographic maps in populations of discrete
neurons in the brain, and it also has the virtue of
being very general. However, the discrete nature
of the standard SOM can be a limitation when
the construction of smooth, higher-dimensional
map manifolds is desired. Since the number of
nodes grows exponentially with the number of
map dimensions, manageably sized lattices with,
say, more than three dimensions (for an appli-
cation of a 3d-SOM, see e.g. [14]) admit only
very few nodes along each axis direction and can,
therefore, be not sufficiently smooth for many purposes where continuity is very important,
as e.g. in control tasks or in robotics.

A parametrized self-organizing map (“PSOM”) generalizes this scheme of a discrete
lattice A to a parametrized “mapping manifold” S ⊂ IRm on which the map coordinates s
may vary continuously. As a consequence, the discrete assignment of reference vectors wa

to lattice points a is replaced by a continuous, vector-valued function w(·) : s %→ w(s) ∈
M ⊂ X, where s varies continuously over a subset S ∈ IRm. Similar to wa, w(s) takes its
value in an embedding space X ⊆ IRd, from which the input vectors x are also drawn. The
response of the PSOM is determined by the value w(s∗), again taken at some best-match
location s∗, which, unlike the best-match location a∗ ∈ S in the SOM case, must now be
found in the continous mapping manifold S defined by Eq. 1 below.

Figures 2a-b illustrate the training set-up of a PSOM that represents a m = 2 dimen-
sional mapping manifold S. The image of S under w()̇ is a manifold M ⊂ X ⊆ IR3,
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which we will denote as “embedded manifold”. For this pedagogic example, we choose
M as a tilted plane of which 9 sample points w1, . . . ,w9 are assumed to be given. To
construct the PSOM requires assignment of the location a in the mapping manifold S to
each given training point (w1 = wa11; . . . ;w9 = wa33), and thereby specifying a topological
organization, as explained below.
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Figure 2: a–d: Illustration of the training setup for a 3×3 PSOM for the simple task of a linear
mapping defined by a tilted plane in 3D. (a) The nine training points are roughly topologically
ordered, as shown by the tick marks in a orthonormal projection of the 3D embedding space X
and (b) their corresponding auxiliary mapping coordinates a ∈ A in the mapping manifold S,
lying on a rectangular grid. By the virtue of Eq. 2, S spans an m = 2 dimensional manifold M
in the embedding space X, visualized in (c–d). Note, the training set does not necessarily lie on
any exact grid in X. The cube is drawn for visual guidance only.

The best-match location s∗ in the mapping manifold S it then found, in analogy to the
SOM algorithm, by minimizing a distance function dist(·)

s∗ = argmin dist (w(s),x) . (1)

How can the required smooth manifold w(s) be actually constructed? In principle,
there are several ways, but a particular close analogy to the standard SOM results when
we take

w(s) =
∑

a∈A

H(a, s)wa . (2)

This means that we need a “basis function” H(a, s) for each formal neuron (in the following
also called “knot”), weighting the contribution of its reference vector (“training point”)
wa depending on the location s relative to the knot position a in the mapping manifold
S, and possibly also the relative positions to all the other knots (however, in our notation
we drop the dependency H(a, s) = H(a, s;A) on the latter.)

Specifying for each training vector a knot location a ∈ A introduces a topological order
between the training points wa: training vectors assigned to knots a and a′, that are
neighbors in the lattice A, are perceived to have the specific neighborhood relation. This
allows the PSOM to draw extra curvature information from the training set, information
which is not available within other techniques, such as the Radial Basis approach (e.g.
[10, 1]).
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The topological organization of the given data points is crucial for a good generalization
behavior. For a general data set the topological ordering of its points may be quite irregular
and a set of suitable basis functions H(a, s) difficult to construct.

A suitable set of basis functions can be constructed in many ways but must meet two
conditions: (i) The hyper-surface M shall pass through all desired support points. At
those points, only the local knot contributes (which weight one.) This is expressed by the
ortho-normality condition:

H(ai, aj) = δij ; ∀ ai, aj ∈ A. (3)

(ii) Consider the task of mapping a constant function x = wa. Obviously the sum in Eq. 2
should be constant as well, which means, the sum of all contribution weights should be
one. This is the division of unity condition:

∑

a∈A

H(a, s) = 1, ∀s. (4)

A simple construction of basis functions H(a, s) becomes possible when the topology
of the given points is sufficiently regular. A particularly convenient situation arises for the
case of a multidimensional rectangular grid. In this case, the set of functions H(a, s) can
be constructed from products of one-dimensional Lagrange interpolation polynomials, as
described in more detail in the Appendix.
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Figure 3: a–d: PSOM recall procedure for a rectangular spaced set of 10×10 (x1, x3) tuples to
(x2, x3), together with the original training set: (a) the input space in the x2 = 0 plane, (b) the
resulting (Eq. 1) mapping coordinates s∗ ∈ S, (c) the completed data set in X, (d) the desired
output space projection (looking down x1).

When M has been specified, the PSOM is used in an analogous fashion like the SOM:
given an input vector x, (i) first find the best-match position s∗ on the mapping manifold
S by minimizing a distance dist(x,w(s)), and then (ii) use the surface point w(s∗) as the
output of the PSOM in response to the input x (“recall”, using Eq. 2.) To build an input-
output mapping, the standard SOM is often extended by attaching a second vector wout to
each formal neuron. Here, we generalize this and view the embedding space X ⊂ IRd as the
Cartesian product of some “input” subspace X in and some “output” subspace Xout. Then,
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w(s∗) can be viewed as an associative completion of the input space component of w(s∗),
if the distance function dist(·) (in Eq. 1) is chosen as the Euclidean norm applied only to
the input components of x (belonging to X in), Thus, the function dist(·) actually selects
the input subspace X in, since for the determination of s∗ (Eq. 1, and as a consequence,
of w(s∗)) only those components of x matter, that are regarded in the distance metric
dist(·). The mathematical formulation is the definition of a diagonal projection matrix
P = diag(p1, p2, . . . , pd) with diagonal element pk = 1, ∀k ∈ I, and all other elements are
zero. The set I is the subset of components of X ({1, 2, . . . , d}) belonging to the desired
X in. Then, the distance function can be written

dist(x,x′)2 = (x − x′)T P (x − x′) =
∑

k∈I

pk (xk − x′
k)

2. (5)

As an important feature, dist(·) can be changed on demand, allowing e.g. to reverse the
mapping direction using the same PSOM (or switch to an alternative input space) as
illustrated below.

Returning to Eq. 1, we see that the discrete best-match search in the standard SOM is
now replaced by solving the continuous minimization problem for the determination of s∗.
This increased cost for using the PSOM is the price to pay for its very direct and simple
construction. A simple approach to solve Eq. 1 is to initially (t = 0) find the (SOM-like)
discrete best-match knot st=0 = a∗ in the knot set A associated with the given data points,
followed by an iterative gradient descent for minimizing dist(w(s),x) (Eq. 1):

st+1 = st + γ J(s)T P [x −w(st)]. (6)

Here, γ > 0 is a step size parameter, J(s) is the Jacobian ∂w(s)/∂s evaluated at the current
point, using Eq. 2. This is a very general and simple scheme that works satisfyingly in
many cases. However, the proper choice of the learning parameter γ is somewhat critical.
Too small values lead to unnecessarily many iteration steps, too large values can lead
to divergence. However, the special quadratic form of the minimized distance measure
allows to make use of more robust and efficient, second order methods. Thus, our current
implementation uses the computationally more efficient Levenberg-Marquardt-Algorithm
that finds the best match coordinate vector s∗ safely within a couple of iterations, see
Appendix and [12].

Fig. 3b shows the result of the “best-match projection” x %→ s∗(x) into the manifold
M , when x varies over a regular 10×10 grid in the plane x2 = 0 and x1, x3 is selected
as the input space (by defining dist(·) appropriately). Fig. 3c–d shows a rendering of the
associated “completions” w(s∗(x)) which form a grid in X.

Equation (6) can be viewed as a network dynamics for a recurrent network, however,
with node activities represented parametrically by the map coordinate vector s. This
network bears interesting similarities to the standard SOM, in particular, one can consider
the vectorial coefficients wa as the reference vectors of an underlying, “coarse”, standard
SOM.

The naming of the PSOM has its historical roots in the derivation from the SOMs. The
ability of self-organizing a training set is supplied by an pre-structuring SOM by sharing
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the reference vectors. Even if we hesitate renaming the method, we introduced the PSOM
here independently operating from a SOM. This is useful in all applications where the
required topological order can be gained by structured sampling of the training data –
often without any extra effort.

A particularly important property of the network dynamics Eq. 6 is that it enables the
PSOM to complete partial data vectors (of course, the same feature still holds if the gradi-
ent dynamics is replaced by a more efficient computation scheme, such as the mentioned
Levenberg-Marquardt-algorithm). This occurs, when |I| < d, i.e., I is a proper subset of
the set of all dimensions of X. In this case, dist()̇ (Eq. 2) is taken only in the subspace X in

of specified data components, and the specified components of the input vector act as a
constraint for the determination of a map location s∗, from which then the remaining data
components are obtained by virtue of the associated vector w(s∗). Usually, if at least m
components of x are specified, this constraint will be sufficient to constrain the set of com-
patible map locations to a single point, and the associated vector w(s∗) can be considered
as the completion of the partial input1 s.

This property is particularly useful if the map manifold represents the graph of a func-
tion, since it then allows to arbitrarily split the d-dimensional variable set of X into a
m-dimensional subset of “independent” (“input”) and d−m remaining, “dependent” (“out-
put”) variables, the values of which are obtained from the value of w(s) at the fixed point
s∗ of Eq. 6.

Figure 4: Left: Reference vectors of a 3×3 SOM, shared as training vectors by a 3×3 PSOM,
representing one octant of the unit sphere surface (x1, x2, x3 > 0). Center: A mapping x3 =
x3(x1, x2) obtained from the PSOM with P =diag(1, 1, 0), right: same PSOM, but used for
mapping x1 = x1(x2, x3) by choosing P =diag(0, 1, 1).

As a simple example, consider a 2-dimensional data manifold in IR3 that is given by
the portion of the unit sphere in the octant xi > 0 (i = 1, 2, 3). Fig. 4, left, shows
a SOM, providing a discrete approximation to this manifold with a 3 × 3-mesh. While
the number of nodes could be easily increased to obtain a better approximation for the

1more precisely, in the non-degenerate case m specified values will constrain the possible solutions s to a
zero-dimensional subset of the map manifold. This subset may contain one or several discrete alternatives.
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two-dimensional manifold of this example, this remedy becomes impractical for higher
dimensional manifolds and the coarse approximation that results from having only three
nodes along each manifold dimension is typical for these cases. However, we can use the
nine reference vectors, together with the neighborhood information from the 3×3 SOM
to construct a PSOM that provides a much better, fully continuous representation of the
underlying manifold.

Fig. 4 demonstrates the 3×3 PSOM working in two different mapping “directions”.
This flexibility in associative completion of alternative input spaces X in is useful in many
contexts. For instance, in robotics a positioning constraint can be formulated in joint,
Cartesian or, more general, in mixed variables (e.g. position and some wrist joint angles),
and one may need to know the respective complementary coordinate representation, re-
quiring the direct and the inverse kinematics in the first two cases, and a mixed transform
in the third case. If one knows the required cases beforehand, one can construct a separate
mapping for each. However, it is clearly more desirable to work with a single network that
can complete different sets of missing variable values from different sets of known values.

3 PSOMs for Vision Learning

So far, we have been investigating PSOMs for learning tasks in the domain of robotics, since
the approach works best for smooth mappings, and if the number of independent degrees
of freedom is not larger than about, say, six. In vision, one usually has extremely high-
dimensional data, and in many cases, it is doubtful to what extent smoothness assumptions
are valid.

Still, there are many situations in which one would like to compute from an image
some low-dimensional parameter vector, such as a set of parameters describing location,
orientation or shape of an object, or properties of the ambient illumination etc. If the image
conditions are suitably restricted, the input images may be samples that are represented
as vectors in a very high dimensional vector space, but that are concentrated on a much
lower dimensional sub-manifold, the dimensionality of which is given by the independently
varying parameters of the image ensemble.

A frequently occurring task of this kind is to identify and mark a particular part of an
object in an image. For instance, in face recognition it is important to identify the locations
of salient facial features, such as eyes or the tip of the nose. Another interesting task is
to identify the location of the limb joints of human beings for analysis of body gestures.
In the following, we want to report recent results from a third application domain, the
identification of finger tip locations in images of human hands. This would constitute a
useful preprocessing step for inferring 3D-hand postures from images, and could help to
enhance the accuracy and robustness of other, more direct approaches for this task that
are based on LLM-networks [9].

Currently, we are working with a restricted ensemble of hand postures. The main degree
of freedom of a hand is its degree of “closure”, therefore, for the initial experiments we
worked with an image set comprising grips in which all fingers are flexed by about the same
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Figure 5: Left,(a): Typical input image. Upper Right,(b): after thresholding and binarization.
Lower Right,(c): position of 3×3 array of Gaussian masks (the displayed width is the actual
width, reduced by a factor of four in order to better depict the position arrangement)

amount, varying from fully flexed to fully extended. In addition, we consider rotation of
the hand about its arm axis. These two basic degrees of freedom yield a two-dimensional
image ensemble (i.e., for the dimension m of the map manifold we have m = 2). The
objective is to construct a PSOM that maps a monocular image from this ensemble to the
2D-position of the index finger tip in the image.

In order to have reproducible conditions, the images were generated with the aid of
an adjustable wooden hand replica in front of a black background (for the required seg-
mentation to achieve such condition for more realistic backgrounds, see e.g. [6, 7]). A
typical image (80×80 pixel resolution) is shown in Fig. 5a. From the monochrome pixel
image, we generated a 9-dimensional feature vector first by thresholding and binarizing
the pixel values (threshold = 20, 8-bit intensity values), and then by computing as image
features the scalar product of the resulting binarized images (shown in Fig. 5b) with a grid
of 9 Gaussians at the vertices of a 3×3 lattice centered on the hand (Fig. 5c). The choice
of this preprocessing method is partly heuristically motivated (the binarization makes the
feature vector more insensitive to variations of the illumination,) and partly based on good
results achieved with a similar method in the context of the recognition of hand postures
[7, 9].

To apply the PSOM-approach to this task requires a set of labeled training data (i.e.,
images with known 2D-index finger tip coordinates) that result from sampling the pa-
rameter space of the continuous image ensemble on a 2D-lattice. In the present case,
we chose the subset of images obtained when viewing each of four discrete hand postures
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(fully closed, fully opened and two intermediate postures) from one of seven view directions
(corresponding to rotations in 30◦-steps about the arm axis) spanning the full 1800-range.
This yields the very manageable number of 28 images in total, for which the location of
the index finger tip was identified and marked by a human observer.

Figure 6: Some examples of hand images with correct (cross-mark) and predicted (plus-mark)
finger tip positions. Upper left image shows average case, the remaining three pictures show the
three worst cases in the test set. The NRMS positioning error for the marker point was 0.11 for
horizontal, 0.23 for vertical position coordinate.

Ideally, the dependency of the x- and y-coordinates of the finger tip should be smooth
functions of the resulting 9 image features. For real images, various sources of noise (surface
inhomogeneities, small specular reflections, noise in the imaging system, limited accuracy
in the labeling process) lead to considerable deviations from this expectation and make
the corresponding interpolation task for the network much harder than it would be were
the expectation of smoothness fulfilled. Although the thresholding and the subsequent
binarization help to reduce the influence of these effects, if compared with computing the
feature vector directly from the raw images, the resulting mapping still turns out to be
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very noisy. To give an impression of the degree of noise, Fig. 7 shows the dependence of
horizontal (x-) finger tip location (plotted vertically) on two elements of the 9d-feature
vector (plotted in the horizontal xy−plane). The resulting mesh surface is a projection of
the full 2d-map-manifold that is embedded in the space X, which here is of dimensionality
11 (nine dimensional input features space X in, and a two dimensional output space Xout =
(x, y)T for position.) As can be seen, the underlying “surface” does not appear very smooth
and is disrupted by considerable “wrinkles”.

Figure 7: Dependence of vertical index finger position on two of the nine input features, illus-
trating the very limited degree of smoothness of the mapping from feature to position space.

To construct the PSOM, we used a subset 16 images of the image ensemble by keeping
the images seen from the two view directions at the ends (±90◦) of the full orientation range,
plus the eight pictures belonging to view directions of ±30◦. For subsequent testing, we
used the 12 images from the remaining three view directions of 0◦ and ±60◦. I.e., both
training and testing ensemble consisted of image views that were multiples of 60◦ apart,
and the directions of the test images are midway between the directions of the training
images.

Even with the very small training set of only 16 images, the resulting PSOM achieved a
NRMS-error of 0.11 for the x-coordinate, and of 0.23 for the y-coordinate of the finger tip
position (corresponding to absolute RMS-errors of about 2.0 and 2.4 pixels in the 80×80
image, respectively). To give a visual impression of this accuracy, Fig. 6 shows the correct
(cross mark) and the predicted (plus mark) finger tip positions for a typical average case
(upper left image), together with the three worst cases in the test set (remaining images).

4 Hierarchical Learning with multiple PSOMS

If one wants to learn with extremely few examples, one inevitably faces a dilemma: on the
one hand, with few examples one can only determine a rather small number of adaptable
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parameters and, as a consequence, the learning system must be either very simple, or,
and this is the usually relevant alternative, it must have a structure that is already well-
matched to the task to be learnt. On the other hand, however, having to painstakingly
pre-structure a system by hand is precisely what one wants to avoid when using a learning
approach.

Is is possible to find a workable compromise that can cope with this dilemma, i.e., that
somehow allows the structuring of a system without having to put in too much by hand?

One way to approach a solution is to split learning into several stages. The earlier stage
is considered as “investment stage” that may be slow and has the task to pre-structure
the system in such a way that the later stage, operating on a now specialized system, can
learn fast and with extremely few examples.

Of course, this does not bring about the “miracle” to learn with an unstructured system
and a small number of examples. However, going through a maybe longer pre-structuring
stage once and arriving at a pre-structured system which then can be rapidly adapted to
specific situations within a narrower (as a result of the pre-structuring phase) domain may
be a useful compromise. It also seems to implement an important principle, namely (i)
investing some time (the earlier stages) into learning of how to learn (investment stage)
and thereby preparing the ground for (ii) rapid learning during the later stages.

To implement this hierarchical learning approach we will use the two-level PSOM ar-
rangement depicted in Fig. 8. We consider in the following system “skills” in the form of
function mappings or transforms which are dependent on some context, i.e. on the state
of the system or system environment. Within a fixed context, these transforms are carried
out by the lower level “T-PSOM” (“T” indicates “transforming”). For instance, a partic-
ular “skill” might be represented by a bi-directional mapping between two “task variable”
sets x⃗1 and x⃗2. The context dependence comes in through the upper level “Meta”-PSOM.
This PSOM maps the current context into the weight set ω⃗ that defines the mapping of
the T-PSOM.

To construct this Meta-PSOM requires to find a set of input-output pairs (u⃗ref , ω⃗) where
u⃗ref varies over a set of “prototypical context situations”, and ω⃗ is the weight pattern for
the T-PSOM that represents the required “skill” when the context is characterized by u⃗ref .
Thus, we are led very naturally to the construction of a set of prototypical basis mappings,
one for each of the prototypical context situations that were chosen for the training points
of the Meta-PSOM. The learning of these mappings constitutes the “investment learning”
stage.

Once this investment learning phase is completed, the Meta-PSOM allows us to adjust
the T-PSOM immediately to a new context since it directly maps contexts into mappings
between the task variables x⃗1 and x⃗2. In the absence of the Meta-PSOM, any such ad-
justment would demand potentially time-consuming re-learning. With the Meta-PSOM,
this re-learning becomes tremendously accelerated. The task of learning a mapping in
– or adapting to – a new, unknown environment now takes the form of an immediate
Meta-PSOM mapping that in effect interpolates in the space of the previously acquired ba-
sis mappings and thereby provides us with the equivalent of an extremely rapid learning
ability.
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Figure 8: The transforming “T-PSOM” maps between input and output spaces (allowing to
switch the mapping direction whenever need arises). In a particular environmental context, the
correct transformation is learned, and encoded in the internal parameter or weight set ω⃗ of the
T-PSOM. Together with some observation u⃗ref that characterizes the current context, the weight
set ω⃗ is employed as a training point (u⃗ref , ω⃗) for the second level “Meta-PSOM”. After a sufficient
number of such training points, the Meta-PSOM is able to generalize the mapping u⃗ref %→ ω⃗ to
a new environment. When encountering any change, the context observation u⃗ref gives input to
the Meta-PSOM and determines the new weight set ω⃗ for the base T-PSOM.

In the following, we illustrate this approach more concretely with an example situation,
involving two learning stages and a robot (Puma 560) that is monitored by a camera, see
Fig. 9. The robot is positioned behind a table and the entire scene is displayed on a
monitor. By a mouse click, a user can select on the monitor some target point of the
displayed table area. The goal is to move the robot end effector to the indicated position
on the table. This requires to compute a transformation T : x⃗ ↔ u⃗ between coordinates
on the monitor (or “camera retina” coordinates) and corresponding world coordinates x⃗
in the frame of reference of the robot. This transformation depends on many factors. The
learning task (for the later stage) is to rapidly relearn this transformation whenever the
camera has been repositioned.

In this example, the T-PSOM has to represent the transformation T : x⃗ ↔ u⃗ with the
camera position as the additional context. To apply the previous scheme, we must first
learn (“investment stage”) the mapping T for a set of prototypical contexts, i.e., camera
positionings.

To keep the number of prototype contexts manageable, we eliminate some DOFs of the
camera by requiring fixed focal length, camera tripod height, and roll angle. To constrain
the elevation and azimuth viewing angle, we choose one fixed land mark, or “fixation point”
ξfix in the scene which we require to be held at a constant location in the camera image.
This leaves two degrees of freedom for the camera repositioning. I.e., the set of contexts
on which T will depend is a two-parameter family.

For the present investigation, we chose from this set 9 different camera positionings,
arranged in the shape of a 3×3 grid (Fig. 9). For each of these nine contexts, the associated
mapping T ≡ Tj, (j = 1, 2 . . . 9) is learned by a T-PSOM by visiting a rectangular grid
set of end effector positions ξi (here we visit a 3×3 grid in x⃗ of size 30×30 cm2) jointly
with the location in camera retina coordinates (2D) u⃗i. This yields the tuples (x⃗i, u⃗i) as
the training vectors wai for the construction of a weight set ω⃗j (valid for context j) for the
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Figure 9: Rapid learning of the 2D visuo-motor coordination for a camera in changing locations.
The basis T-PSOM is capable of mapping to (and from) the Cartesian robot world coordinates
x⃗, and the location of the end-effector (here the wooden hand replica) in camera coordinates
u⃗ (see cross mark.) In the pre-training phase, nine basis mappings are learned in prototypical
camera locations (chosen to lie on the depicted grid.) Each mapping gets encoded in the weight
parameters ω⃗ of the T-PSOM and serves then, together with the system context observation u⃗ref

(here, e.g. the cone tip), as a training vector for the Meta-PSOM.

T-PSOM in Fig. 8.
Each Tj (the T-PSOM in Fig. 8, equipped with weight set ω⃗j) solves the mapping task

only for the camera position, for which Tj was learned. Thus there is not yet any particular
advantage to other, more specialized methods for camera calibration [2]. However, the
important point is, that we now can employ the Meta-PSOM to rapidly map a new camera
position into the associated transform T by interpolating in the space of the previously
constructed basis mappings Tj .

To this end, the Meta-PSOM must map the current context into a suitable combination
of the weight patterns of the previously acquired basis mappings Tj (indicated by the dashed
arrows in Fig. 8). We already know the required outputs ω⃗j of the Meta-PSOM for those
contexts that were defined by the camera positions used earlier for the construction of the
basis mappings Tj during the investment phase.

For the still missing associated inputs, we can choose any observable quantity that
carries enough information to uniquely identify the current context. Since we restricted
the allowable contexts to a two-parameter family of camera positionings, the observation of
the camera image coordinates u⃗ref of a single reference point ξref fulfils that requirement2.

The constructed input-output tuples (u⃗ref,j, ω⃗j), j ∈ {1, . . . , 9}, serve as the training
vectors for the construction of the Meta-PSOM in Fig. 8 such that each u⃗ref observation
that pertains to an intermediate camera positioning becomes mapped into a weight vector
ω⃗ that, when used in the base T-PSOM, yields a suitably interpolated mapping in the space

2for good position sensitivity, ξref should be not too close to ξfix

14



spanned by the basis mappings Tj .
This enables in the following one shot learning for new, unknown camera places. On

the basis of one single observation u⃗ref , the Meta-PSOM provides the weight pattern ω⃗
that, when used in the T-PSOM in Fig. 8, provides the desired transformation T for the
chosen camera position. Moreover (by using different projection matrices P), the T-PSOM
can be used for various mapping directions, formally:

x⃗(u⃗) = F u %→x
T−PSOM(u⃗; ω⃗(u⃗ref)) (7)

u⃗(x⃗) = F x %→u
T−PSOM(x⃗; ω⃗(u⃗ref)) (8)

ω⃗(u⃗ref) = F u %→ω⃗
Meta−PSOM(u⃗ref ; ω⃗Meta) (9)

Table 1 shows the experimental results averaged over 100 random locations ξ (from
within the range of the training set) seen from 10 different camera locations, from within
the 3×3 roughly radial grid of the training positions, located in a normal distance of about
65–165 cm (to work space center, about 80 cm above table, total range of about 95–195 cm),
covering a 50◦ sector. For identification of the positions ξ in image coordinates, a tiny light
source was installed at the manipulator tip and a simple procedure automatized the finding
of u⃗ with about ±1 pixel accuracy. For the achieved precision is important that all learned
Tj share the same set of robot positions ξi, and that the training sets (for the T-PSOM
and the Meta-PSOM) are topologically ordered, here as two 3×3 grids. It is not important
to have an alignment of this set to any exact rectangular grid in e.g. world coordinates, as
demonstrated with the radial grid of camera training positions (Fig. 9.)

Direct trained T-PSOM with
T-PSOM Meta-PSOM

pixel u⃗ %→ x⃗ Cartesian ∆x⃗ 2.2mm 2.1 % 3.8 mm 3.6 %
Cartesian x⃗ %→ u⃗ pixel error 1.2 pix 1.6 % 2.2 pix 2.8 %

Table 1: Mean Euclidean deviation (mm or pixel) and normalized root mean square error
(NRMS) in % for 1000 points total in comparison of a direct trained T-PSOM and the described
hierarchical PSOM-network, in the rapid learning mode with one observation.

These data demonstrate, that the hierarchical learning scheme does not fully achieve the
accuracy of a straightforward, full retraining of the T-PSOM after each camera relocation.
This is not surprising, since in the hierarchical scheme there is necessarily some loss of
accuracy as a result of the interpolation in the weight space of the T-PSOM. However, the
possibility to achieve the still very good accuracy of the hierarchical approach with only
a single observation per camera relocation is extremely attractive and may often by far
outweight the still moderate decrease that is visible in Table 1.

15



5 Discussion

For the flexible construction of more complex neural systems, the availability of network
modules that can be rapidly constructed from data examples is an important prerequisite.
PSOMs can fill this need, whenever smooth mappings need to be implemented on the basis
of a small number of data examples.

Like many other neural learning algorithms, the merits of PSOMs can only be judged
from studying them in the context of concrete tasks. In this paper, we reported results
for a rather generic type of problem frequently occurring in vision, namely to mark the
location of an object part in an image. As a concrete and non-trivial example, we chose
the task of marking the index finger tip position in images of human hand shapes. The
results indicate, that PSOMs may provide a promising approach for the rapid construction
of vision modules for such tasks on the basis of rather small numbers of training examples.
Thus, they may offer a useful building block also for hybrid vision systems (see, e.g. [7, 6]),
where the detection of object part locations is an important step for invoking higher-level
semantic information for scene analysis.

A second contribution of the paper is a hierarchical learning scheme that allows a very
flexible combination of several PSOMs in such a way that the learning process itself can
be structured into a (i) longer, preparatory or “investment learning” stage that serves
to specialize the system for a certain range of operating contexts, and (ii) a subsequent,
very rapid learning stage in which the system can adapt to changing contexts within an
extremely small number of learning steps.

The key idea for this approach is to use the investment learning stage for the acquisition
of a number of “basis mappings” that solve the task for a sufficient number of prototypical
contexts. The weight sets found for these basis mappings are then used for the construction
of a second, “Meta” PSOM that uses context information to interpolate in the weight sets
of the previously acquired basis mappings.

We have demonstrated the effectiveness of this approach for the task of camera cali-
bration of an industrial Puma 560-Robot, where the “contexts” are different camera posi-
tionings. Under suitable conditions, the proposed learning scheme leads to the ability of
“one-shot” learning from a single observation of a calibration point whenever the camera
has been moved to a new location. This compares favorably to earlier approaches that re-
quired a longer re-learning phase in that case [17]. A recent extension of the new approach
to the binocular case will be reported elsewhere [15].

Two features that distinguish PSOMs from the majority of other neural learning algo-
rithms are particularly important for the practical feasibility of the hierarchical learning
scheme.

First, the mapping implemented by a PSOM is always exact on the examples that were
used for its construction. This is very convenient when mappings shall be constructed
rapidly and without the worry about convergence issues that plague many other learning
algorithms. However, one major restriction is the requirement that the data examples
for constructing the PSOM must be “topologically ordered”, i.e., one must be able to
associate with each data sample w a point a in some discrete lattice in a topology-preserving
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fashion (otherwise the interpolation by the hyper-surface will lead to unacceptably large
generalization errors). However, in many situations the generation of the training points
can be controlled by the user, and the required topological organization can be easily
assured.

The second important feature is the possibility to use the same PSOM mapping in a
“multi-way”-fashion, i.e., the decision of whether a feature of the data vector is used as in-
put or computed as output need not stay fixed, even after the PSOM has been constructed.
The only condition to be met is that a sufficiently large number of features is declared as
input (via the index set I) such that their values can specify the values for the remaining
output features uniquely.

This multiway-mapping capability of a PSOM leads to a considerable flexibility in all
its applications. For instance, in the hierachical PSOM arrangement of Fig. 8, the Meta-
PSOM actually maps contexts into a continuous familiy of multiway mappings operating at
the level of the task variables x⃗1,2. This already provides an enormous flexibility, since both
the roles of the task variables x⃗1 and x⃗2 as input or output can be flexibly interchanged
and even different partitionings into an input and output set can be realized, a possibility
not indicated in Fig. 8.

The multiway mapping ability can even be used across levels in the hierarchy. Imagine,
for instance, that a set of training pairs that pertain to some unknown context u⃗ref has
been used to obtain a new weight set ω⃗ for the lower level T-PSOM. Then, operating
the top level Meta-PSOM in the inverse mapping direction ω⃗ %→ u⃗ref will result in an
identification of the current context observable on the basis of a number of input-output
pairs at the task level. Clearly, such flexibility in combining information, together with the
very rapid construction of PSOMs opens up extremely interesting possibilities.

Besides the detection of object part locations and camera calibration, there are also
many other tasks for which the PSOM approach can offer significant promise. Recently, we
have studied the task of learning a highly non-linear kinematics transform of an articulated
robot finger from a small number of training postures [16]. In earlier work, we demonstrated
the use of a PSOM in an eye-tracking system to compensate distortions that arise when the
subject wears spectacles. The quick adaptation of the PSOM to the optical characteristics
of the user’s spectacles allowed a three-fold increase in the accuracy of gaze-tracking with
this system [11].

These results are very encouraging for studying the use of PSOMs in other, similar
domains, such as the compensation of lighting variability in computer vision, or the learning
of various other kinematics and dynamics transforms in robotics. Work along these lines,
together with the development of still more efficient variants of PSOMs through improved
knot placing schemes (“Chebyshev PSOMs”) and the use of PSOMs in conjunction with
local approximation techniques (“local PSOMs”) [16] is currently under way.

Appendix A: Choice of Basis Functions

A favorable choice for H(a, s) is the multidimensional extension of the well known Lagrange
polynomial. In one dimension (m=d=1) a is from a set A = {ai | i = 1, 2, . . . n} of discrete
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values and Eq. 2 can be written as the Lagrange polynomial, interpolating through n
support points (ai, wi):

w(s) = l1(s, A)w1 + l2(s, A)w2 + · · ·+ ln(s, A)wn =
n∑

k=1

lk(s, A) wk (10)

where the Lagrange factors li(s, A) are given by

li(s, A) =
n∏

j=1, j ̸=i

s − aj

ai − aj
. (11)

1a1 
1a2 

1a3 

2a1 
2a2 

2a3 
2a4 

3a1 

3a2 

S s
1 s

2 

s
3 

Figure 10: Example of a m = 3 dimensional mapping manifold S with a 3×4×2 knot set A ⊂ S
in orthonormal projection. Note the rectangular structure and the non equidistant spacing of the
2ai.

If m > 1, Eq. 10 and 11 can be generalized in a straightforward fashion, provided the
set of knot points form a m-dimensional hyper-lattice in S, i.e. is the Cartesian product of
m one-dimensional knot point sets A = A1×A2 × · · ·×Am, with Aν = {νa1,νa2, . . . ,νanν}.
Here, νai denotes the i-th value that can be taken by the ν-th component (ν ∈ {1, . . . , m})
of a along the ν-th dimension of s = (1s, 2s, . . . , ms)T ∈ S. Fig. 10 illustrates an example
with n1 = 3, n2 = 4, and n3 = 2.

With this notation, we can write H(a, s) as

H(a, s) =
m∏

ν=1

liν (
νs, Aν) (12)

using the one-dimensional Lagrange factors and the notation ai = (1ai1 ,
2ai2 , . . . ,

maim)T ∈
A. In Fig. 11 some basis functions of a, here, m = 2 dimensional PSOM with equidistantly
chosen knot spacing, are rendered. Note, that the PSOM algorithm is invariant to offsetting
each S axes (together with the iterative best-match finding procedure, described below, it
becomes also invariant to rescaling.) Recent comparative results using (for n > 3) a knot
spacing derived from the Chebyshev polynomial are reported elsewhere [16].

The first derivative of (2) turns out to be surprisingly simple, if we write the product
rule in the form

∂

∂x
f1(x)f2(x) · · · fn(x) = f1(x)f2(x) · · · fn(x)

n∑

k=1

∂fk
∂x (x)

fk(x)
, ∀fk(x) ̸= 0. (13)
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Figure 11: Three of the nine basis functions H(a, s) for a 3×3 PSOM with equidistant knot
spacing A1 = A2 = {0, 1

2 , 1} (left:) H((0, 0), s); (middle:) H(( 1
2 , 12), s); (right:) H(( 1

2 , 1), s). The
remaining six basis functions are obtained by 90◦ rotations around s = ( 1

2 , 12).

With the intermediate result

∂

∂ µs
liν (

νs, Aν) = δµν liν (
νs, Aν)

nν∑

j=1, j ̸=iν

1
νs − νaj

and (14)

∂

∂(µs)
H(a, s) = H(a, s)

m∑

ν=1

∂
∂(µs) liν (

νs, Aν)

liν (νs, Aν)
= H(a, s)

nµ∑

j=1, j ̸=iµ

1
µs − µaj

(15)

the row vector of the required Jacobian matrix is

∂w(s)

∂(µs)
=
∑

a

wa H(a, s)
nµ∑

j=1, j ̸=iµ

1
µs − µaj

. (16)

This is correct for all s staying away from the dashed grid structure in Fig. 10; there,
one (or more) of the product functions fk (li) becomes zero. Although the vanishing
denominator is canceled by a corresponding zero in the pre-factor (the derivative of a
polynomial is well-behaved everywhere,) the numerical implementation of the algorithm
requires special attention in the vicinity of a diminishing denominator in Eq. 14. One
approach is, to treat the smallest term ∥νs − νaj∥ in each S -axis direction ν always in a
special manner, as shown below.

For an implementation of the algorithm, an important point is the efficient evaluation
of the Lagrange factors and there derivatives. Below we give some hints how to improve
their computation requiring O(n) operations, instead of O(n2) operations from the “naive”
approach. For the sake of readability we omit from here on the (upper left) S component
index ν (∈ {1, 2, . . . , m}) and reduce the notation of running indexes 1 ≤ νj ≤ νn to the
short form “j”; extra exclusions j ̸= i are written as “j,−i”.

We denote the index of the closest support point (per axes) with an asterisk

i∗ := argmin
j

∥s − aj∥ (17)
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and rewrite Eq. 11 and (15):

li(s, A) =

{
Qi∗

Qidi∗

if i = i∗

else

∂li
∂s

=

{
Qi∗S1,i∗

Qi(S1,idi∗ + 1)
if i = i∗

else

∂2li
∂s2

=

{
Qi∗(S2

1,i∗ − S2,i∗)

Qi

[(
S2

1,i − S2,i

)
di∗ + 2S1,i

] if i = i∗

else

using: di := s − ai

Ci :=
∏

j,−i

(ai − aj) = const Qi :=
1

Ci

∏

j,−i,−i∗
dj

S1,i :=
∑

j,−i,−i∗

1

dj
S2,i :=

∑

j,−i,−i∗

(
1

dj

)2

(18)

The interim quotients Qi and sums S1,i and S2,i are efficiently generated by defining
the master product Qi∗ (and sums S·,i∗ respectively) and working out the specific terms
via “synthetic division” and “synthetic subtraction” for all i ̸= i∗

Qi =
Qi∗

di
, S1,i = S1,i∗ −

1

di
, and S2,i = S2,i∗ −

(
1

di

)2

. (19)

Computing H(a, s) and its derivatives is now a matter of collecting the proper pre-
computed terms. For m > 1 and d > 1, this formulation is superior to otherwise optimized
evaluation schemes, for example the recursive “Neville’s algorithm” [12].

Appendix B: Finding the best-match s∗

This section describes, how to solve the iterative minimization problem for solving Eq. 1
efficiently. Eq. 6 approximates gradient decent for the cost function

E(s) = 1
2 [dist (x,w(s))]2 = 1

2

d∑

k=1

pk [xk − wk(s)]
2 (20)

for a given input vector x. Out experience shows that the simple first order gradient
descent method given by Eq. 6 is rather sensitive to the proper choice of the step size
parameter γ. Therefore we employ the Levenberg-Marquardt algorithm [8, 12] requiring
essentially to solve a linear system

m∑

ν=1

(
∂2

∂(µs)∂(νs)
E + δµνλ

)

∆sν −
∂

∂(µs)
E = 0. (21)
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Since the system can be rather ill-conditioned we employ the “Singular Value Decom-
position” algorithm [12] (in double precision) for solving Eq. 21.

Starting with st=0 = a∗ and λ = 10−4 the so-called Levenberg-Marquardt parameter λ
is adapted dynamically: if the last iteration step resulted in a cost reduction E(st + ∆s)
the step is accepted, st+1 = st + ∆s, and λ decreased by a significant factor of, say 10.
Otherwise, if the step leads to an increase of cost, then the step will be repeated with
∆s based on an augmented λ. The iteration is stopped when the step size drops below a
desired threshold.

The Levenberg-Marquardt finds the best-match safely within a couple of iterations,
normally more than one order of magnitude faster than the simple steepest gradient algo-
rithm.
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