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Abstract

We report on two new improvements for the “Parameterised Self-Organizing
Map” (PSOM). Both achieve a significant increase in mapping accuracy and
computational efficiency.

For a growing number of training points the use of higher order polynomials
to construct the PSOM “mapping manifold” in [7] can suffer from the increasing
tendency to oscillate between the support points. We propose here to confine
the algorithm to a subset of the training knots, resulting in what we call the
“local-PSOM” algorithm. This allows to avoid the use of high-degree polyno-
mials without sacrificing accuracy. At the same time, the new approach offers a
significant saving in required computations.

A second way to improve the mapping preciseness makes use of the supe-
rior approximation properties of Chebyshev polynomials for the PSOM mapping
manifold.

The benefits of the two new approaches are demonstrated with two bench-
mark problems: approximating a Gaussian bell function and learning of
the (forward and inverse) kinematics of a 3 DOF robot finger. In both cases the
PSOM algorithm exhibit an excellent generalisation ability and that already for
a very small training set size of points.

1 Introduction
In the past, the Self-Organizing Map (SOM) has proven to be a very versatile approach
for constructing data mappings in many different domains [3, 9]. While the original
SOM is of a discrete nature, continuous version – the “Parametrised Self-Organizing
Map” (PSOM) has been proposed recently [7] and studied in the context of learning
tasks for robotics and vision [8, 12, 10]. It was shown that PSOMs exhibit a number
of attractive features, among them rapid learning (as a result of a reduced number
of adaptable parameters), an associative completion capability for continuous-valued
partial input vectors, and the possibility of “factoring” higher-dimensional mappings
into a hierarchy of lower-dimensional PSOMs (“Meta-PSOMs”).

In the present paper, we present two significant improvements to the PSOM-algorithm:
a “Chebyshev PSOM” – an improved knot-spacing scheme leading to higher approxi-
mation accuracy, and a “local-PSOM” that is computationally more efficient than the
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standard PSOM. These improvements are studied for two different tasks: learning to
approximate a 2D-Gaussian bell function, and learning the complete kinematics of a
3-jointed robot finger. The second mapping has a region where it becomes almost
singular and so provides a very challenging benchmarking task for the algorithm.

2 How the Standard PSOM works
This section gives a very brief summary of the standard PSOM algorithm, derived from
the “Self-Organizing Map” (SOM) algorithm (for more details, see [7, 11]).

In contrast to a standard SOM, which consists of a discrete grid of formal neu-
rons each labeled by an index and described by a “reference vector” , a
PSOM consists of a continuous manifold , parameterised by a continuous variable

and described by a smooth function . In both cases, and take
their values in an embedding space , from which the input vectors are also drawn.
The response of a SOM to an input is determined by the reference vector
of the discrete “best-match” node argmin , where . Similarly,
the response of a PSOM is determined by the value at the continuous best-match
location , defined by the analogous Eq. 1 below.

Frequently, it is useful to view the embedding space as the product of some
“input” subspace and some “output” subspace . The distance is used
for finding the best-match location

argmin (1)

and is usually the Euclidean norm, applied to the input components of . Then
can be viewed as an associative completion of the input space component of . In
other words, the function actually selects the input subspace since for
the determination of (and as a consequence, of ) only those components of
matter, that are declared in the distance metric . As an important feature,
can be changed on demand, allowing e.g. to reverse the mapping direction using the
same PSOM.

How can the required smooth manifold be constructed? In principle, there
are several ways, but a particular close analogy to the standard SOM results when we
take

(2)

This means that, we need a “basis function” for each formal neuron (in
the following also called “knot”), weighting the contribution of its reference vector
(“training point”) depending on the location relative to the knot position ,
and possibly, also all other knots (however we drop in our notation the dependency

on the latter.)
Specifying introduces a topological order between the training points : train-

ing vectors assigned to neighboring knots are recognized to be neighbors.
This allows the PSOM to draw extra curvature information from the training set, in-
formation which is not available within other techniques, such as the Radial Basis
approach (e.g. [5, 2]).
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The topological organisation of the given data points is crucial for a good gener-
alisation behavior. For a general data set the topological ordering of its points may
be quite irregular and a set of suitable basis functions difficult to construct.
A suitable set of basis functions can be constructed in many ways but must meet two
conditions: must be ortho-normal ) to
make the manifold passing through all supporting knots; Division of unity:

(consider the task of mapping a constant function . Ob-
viously the sum of basis functions should be flat as well, which means, the sum of all
contribution weights should be one.)

A simple construction of basis functions becomes possible when the topol-
ogy of the given points is sufficiently regular. A particularly convenient situation arises
for the case of a multidimensional rectangular grid. In this case, the set of functions

can be constructed from products of one-dimensional Lagrange interpolation
polynomials, as illustrated in the following and also described in the Appendix.
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Figure 1: a–d: Illustration of the training setup for a PSOM for the simple task of a
linear mapping defined by a tilted plane in 3D (note that a PSOM would be sufficient).
(a) The nine training points are roughly topologically ordered, as shown by the tick marks in
a orthonormal projection of the 3D embedding space and (b) their corresponding auxiliary
mapping coordinates in the mapping manifold , lying on a rectangular grid. By the means
of Eq. 2, spans an dimensional manifold in the embedding space , visualised in
(c–d). Note, the training set does not necessarily lie on any exact grid in . The cube is drawn
for visual guidance only.

Figures 1 illustrates the training set up of a PSOM that represents a di-
mensional “mapping manifold” spanning an “embedded manifold” in

. For this pedagogic example, we choose as a tilted plane in which 9 sam-
ple points are assumed to be given. To construct the PSOM requires as-
signment of the location in the mapping manifold to each given training point

, thus specifying the topological organization, here as
the shown rectangular grid .

The discrete best-match search in the standard SOM is now replaced by solving
the continuous minimization problem for the determination of . A simple approach
to this is to first do the (SOM-like) discrete best-match search to find
in the knot set , followed by an iterative gradient descent for Eq. 1. However, for
good results a efficient implementation of the gradient descent is important. We found
the Levenberg-Marquardt scheme best suited, details must be reported elsewhere [11].
Likewise, the possibility of adapting a PSOM according to a Kohonen-type learning
rule will not be considered here.
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Figure 2: a–d: PSOM recall procedure for a rectangular spaced set of tuples
to , together with the original training set: (a) the input space in the plane, (b)
the resulting (by Eq. 1) mapping coordinates , (c) the completed data set in , (d) the
desired output space projection (looking down ).

Fig. 2b shows the result of the “best-match projection” into the man-
ifold , when varies over a regular grid in the plane and
is selected as the input space (by defining appropriately). Fig. 2c–d shows a
rendering of the associated “completions” which form a grid in .

3 Extensions to the PSOM algorithm

When an increase in mapping accuracy is desired, one normally increases the num-
ber of training points per parameter axis. Here we encounter two shortcomings with
the original approach: The basis polynomials exhibit unsatisfactory convergence
properties with increasing order. Mappings of sharply peaked functions can force a
high degree interpolation polynomial to increasingly strong oscillations, spreading in
between the support knot points of the entire manifold. The computational effort
per mapping manifold dimension grows by for the number of training points
in each axis. Even with a moderate number of sampling points along each parameter
axis, the inclusion of all nodes in Eq. 2 may still require too much computational effort
if the dimensionality of the mapping manifold is high (say, ).

3.1 The “Local” PSOMs

Both aspects motivate an important extension to the standard PSOM approach. The
basic idea is to dynamically construct the PSOM only on a sub-grid of the full training
data set. This sub-grid is (in the simplest case) always centered at the reference vector

that is closest to the current input . The use of the sub-grid leads to lower-degree
polynomials for the basis functions and involves a considerably smaller number of
points in the sum in Eq. 2. Thus, the resulting “local” PSOMs (“l-PSOMs”) provide an
attractive scheme that overcomes both of the shortcomings pointed out in the previous
paragraph. Fig. 3a–d explain the procedure.

3.2 Chebyshev spaced PSOMs

An alternative way to deal with the shortcomings addressed before is the use of an
improved scheme for selecting the grid point spacing in the mapping manifold.
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Figure 3: a–d: The example task of Fig. 1, but this time using a local PSOM of a
training set. (a–b) The input vector selects the closest knot (in the now

specified input space). The associated knot sub-grid is indicated in (c). The minimization
procedure starts at its center and uses only the PSOM constructed from the
sub-grid. (d) displays the mapping result in , together with the selected sub-grid of
knots in orthonormal projection. The light dots indicate the full set of training knots. (For the
displayed mapping task, a PSOM would be appropriate; the grid is for illustrative
purpose only.)

As is well-known from approximation theory, a equidistant grid point spacing is
usually not the optimal choice for minimizing the approximation error (see [1, 6]). For
polynomial approximation on an interval [-1,1], one should choose the support points

in each axis of at locations given by the zeroes of the Chebyshev polynomial

arccos

the zeros given by (3)

It turns out that this choice of support points can

s1 

s2 

Figure 4: Placement of
knots , placed according
to the zeros of the Chebyshev
polynomial in Eq. (3).

be adopted for the PSOM approach without any in-
crease in computational costs. As we will demonstrate
shortly, the resulting Chebyshev spaced PSOM (“C-
PSOM”) tends to achieve considerably higher approx-
imation accuracy as compared to equidistant spaced
PSOMs for the same number of knot points. As a re-
sult, the use of Chebyshev PSOMs allows a desired ac-
curacy to be achieved with a smaller number of nodes,
leading to the use of lower-degree polynomials together
with a reduced computational effort.

4 Results

4.1 Example: The Gaussian Bell

As a first example to compare the local and Chebyshev spaced PSOMs we consider
the Gaussian bell function , with chosen to ob-
tain a “medium sharp” curved function in the square region . Using (in

) equidistantly sampled training points we compute the root mean square devia-
tion (RMS) between the goal mapping and the mapping of (i) a PSOM with equidis-
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tantly spaced knots, (ii) local PSOMs with sub-grid sizes , 3, 4 (sub-grids use
here also equidistant knot spacing), and (iii) PSOMs with Chebyshev spaced knots.

0.0001

0.001

0.01

0.1

1

121086543

D
ev

ia
tio

n 
(n

rm
s)

Number of Training Knots per Axes

2x2
3x3
4x4

Chebyshev spacing, full set
equidistant spacing, full set
Chebyshev spacing, full set

0

0.05

0.1

0.15

0.2

0.25

0.3

121086543

D
ev

ia
tio

n 
(n

rm
s)

Number of Knots ^2

equidistant spacing
Chebyshev spacing

Figure 5: a–b; Mapping Accuracy of the Gaussian bell function for the presented PSOM
variants – in a linear (a) and a logarithmic plot (b) – versus the number of training points per
axes.

Fig. 5 compares the numerical results (obtained with a randomly chosen test set)
versus . All curves show an increasing mapping accuracy with increasing number
of training points, however, for the Chebyshev spaced PSOM (iii) shows a
significant improvement over the equidistant PSOM (for , the PSOM and the
C-PSOM coincide, because the Chebyshev polynomials are always symmetric to zero
and here equidistant as well).

For the graphs show the largest differences. Fig. 6 zooms in, to detail the
mapping performance as grid surface plots.
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Figure 6: a–d, ; (a) training points are equidistantly sampled for all PSOMs; (b)
shows the resulting mapping of the local PSOM with sub-grid size . (c) There are little
overshoots in the marginal mapping areas of the equidistant spaced PSOM (i) compared to (d)
the mapping of the Chebyshev-spaced PSOM (ii) which is for already visually identical
to the goal map.

4.2 Application: Robot Finger Kinematics

This section presents the results of applying the PSOM algorithm to the task of learn-
ing the kinematics of a 3 degree-of-freedom (DOF) robot finger, taken from a three-
fingered modular hydraulic robot hand, developed by the Technical University of Mu-
nich [4]. The finger is actuated by spring-loaded oil cylinders driven by a remote “base
station” that provides the hydraulic pressure. Its mechanical design allows roughly the
mobility of the human index finger, scaled up by 10%. A cardanic base joint (2 DOF)
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offers sidewards gyring of and full adduction with two additional coupled joints
(1 DOF). See Fig. 7.

Figure 7: a–d: (a) stroboscopic image of one finger in a sequence of extreme joint positions.
(b–d) Several perspectives of the workspace envelope , tracing out a cubical grid
in the joint space . The arrow marks the fully adducted position, where one edge contracts to
a tiny line.

In robotics, the kinematics denotes the relationship between joint or actuator co-
ordinates and the Cartesian position of a particular end effector location. In the case
of our finger, there are several coordinate systems of interest, e.g. the joint angles,
the cylinder piston positions, one or more finger tip coordinates, as well as further
configuration dependent quantities, such as the Jacobian matrices for force/moment
transformations. All of these quantities can be simultaneously treated in one single
common PSOM; here we demonstrate only the hardest part, the classical inverse kine-
matics. When moving the three joints on a cubical grid within their maximal
configuration space, the fingertip (or more precise the mount point) will trace out the
“banana” grid displayed in Fig. 7 (confirm this workspace with your finger).

We exercised several PSOMs with nine dimensional data tuples ( ),
where denotes the joint angles, the piston displacement and the finger point
position, all equidistantly sampled in . Fig. 8a–b depicts a and an projection of
the smallest training set, .

To visualise the inverse kinematics ability, we ask the PSOM to back-transform
a set of workspace points of known arrangement. In particular, the workspace filling
“banana” set of Fig. 7 should yield a rectangular grid of . Fig. 8c–e displays the actual
result. The distortions look much more significant in the joint angle space (a), and the
piston stoke space (b), than in the corresponding world coordinate result (b) after
back-transforming the PSOM angle output. The reason is the peculiar structure; e.g. in
areas close to the tip a certain angle error corresponds to a smaller Cartesian deviation
than in other areas.

When measuring the mean Cartesian deviation we get an already satisfying re-
sult of 1.6 mm or 1.0 % of the maximum workspace length of 160 mm. In view of
the extremely minimal training set displayed in Fig. 8a–b this appears to be a quite
remarkable result.

Nevertheless the result can be further improved by supplying more training points
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a)           b)           c)           d)           e)           

Figure 8: a–b and c–e; Training data set of 27 nine-dimensional points in for the
PSOM, shown as a perspective surface projections of the (a) joint angle and (b) the corre-
sponding Cartesian sub space. Following the lines connecting the training samples allows one
to verify that the “banana” really possesses a cubical topology. (c–e) Inverse kinematic result
using the grid test set displayed in Fig. 7. (c) projection of the joint angle space (transparent);
(d) the stroke position space ; (e) the Cartesian space , after back-transformation.
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Figure 9: a–b: Mean Cartesian inverse kinematics error (in mm) of the presented PSOM types
versus number of training knots per axes (using a test set of 500 randomly chosen positions;
(a) linear and (b) log plot). Note, the result of Fig. 8c–e corresponds to the smallest training
set . The maximum workspace length is 160 mm.

as shown in the asterisk marked curve in Fig. 9. The effective inverse kinematic ac-
curacy is plotted versus the number of training knots per axes, using a set of 500
randomly (in uniformly) sampled positions.

5 Discussion

How much do we gain with the Chebyshev and the local PSOM? Both Figs. 5 and
9 show that alone the use of the Chebyshev spacing can reduce the approximation
error by a factor of roughly 4-10 for the present tasks, without incurring any additional
computational costs. The explanation is the more graceful approximation behavior due
to smaller extrema of the polynomial approximation in marginal areas of the mapping
interval (see also [6]). The effect can be visually recognised in the little overshoots in
Fig. 6c versus 6d.

However, in many cases the use of local PSOMs can be even more attractive, since
they offer a significant reduction of the computational effort that still can even be
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accompanied with dramatic gains in accuracy. This is apparent in Fig. 9, where a
local PSOM outperforms a full set Chebyshev-PSOM in accuracy while at the

same time requiring much less computation. If a local PSOM is used with a
training set, the computational effort is comparable to that of a Chebyshev

PSOM, but the average Cartesian error of 0.03 mm is much lower than the 0.8 mm
of the latter case (or the 2 mm of a standard PSOM). Note also that even the

local PSOM almost reaches the same accuracy as the computationally much
more expensive full set standard PSOM.

Of course, there may be functions that are locally less well described by a cubic
polynomial, and the Gaussian bell function considered in Sec. 4.1. provides such an
example. Here, the full-set Chebyshev PSOM remains superior, but a PSOM is
already sufficient to reach or outperform the accuracy of a full set equidistant PSOM
while reducing the computational cost for by a factor of almost one order of
magnitude (Fig. 5). For , the accuracy of the PSOM comes close to the
Chebyshev performance.

Thus, rather low order local PSOMs combine good or even excellent accuracy with
rather modest computational requirements. Their use preserves all other benefits of
the standard PSOMs, such as associative completion and a high flexibility in choosing
even very high-dimensional embedding spaces (not that the convergence behavior of
the PSOM and the required number of nodes are not dominated by the embedding
space dimensionality , but by the usually much lower intrinsic dimensionality
of the manifold ).

The placement of the sub-grid needs some attention concerning the continuity of
the resulting map. Having an even number of sub-grid interval leave the ambiguity
of placing the upper or lower of the two central intervals next to . For a detailed
discussion see [11].

The concept of local PSOM bears some relations to the spline technique. Be-
sides the fact that the PSOM algorithm can be also engaged as a general interpolation
technique, share both the internal piecewise construction of a polynomial on a set of
neighboring knots.

For the sub-grid size the local PSOM becomes actually identical to the
multidimensional extension of the linear splines. The resulting mapping belongs to
the “harmonic functions” and has interesting mathematical properties (e.g. “soap film
membrane”, see [11]).

For and its concept resembles the quadratic and the cubical spline, respec-
tively. In contrast to the spline concept using piecewise assembled polynomials, we
employ one single, dynamically constructed interpolation polynomials with the benefit
of usability for multiple dimensions .

We finally note an important point that might be easily overlooked. Unlike most
interpolation schemes, the interpolation by a PSOM is not exclusively based on the
metric distances between the data points in their embedding space . Instead, the
chosen grid and labeling provide additional “topological” information to
the PSOM that may be used to shape its generalization properties in a desired way A
good example is provided by the “banana”-data set for the finger kinematics
(Fig. 8b). Here, the metric distances of the given data points hardly would reveal their
origin from a 3x3x3 sampling grid. Yet, the interpolation by a PSOM (Fig. 8e)
is very accurate and fully recovers the true topology of the data set.

9



If the underlying “true topology” of the data set is unknown, the choice of some
grid can only be considered a good guess. Therefore, the PSOM-approach is mainly
suited for situations where the training data points are known to have arisen from some
process with an underlying grid-like-sampling topology. This is frequently fulfilled in
robotics, and in these cases then the proper labeling of the data points by the knot
values is either known or can be reconstructed, e.g. by the help of a standard SOM.

6 Conclusion
The PSOM algorithm can be characterized by learning from very few examples and
dynamical assignment of input and output space (associative completion). Its strength
is to pick up the essential curvature information of the topologically ordered training
data set by constructing a smooth manifold. The kinematics of a 3 DOF robot finger
can serve as a good example, see the “banana” reconstruction of Fig. 7 in Fig. 8e using
the coarse data set Fig. 8b.

We presented two extensions to the PSOM algorithm aimed at improving the map-
ping accuracy and the computational efficiency with larger training sets.

(i) The proposed “local PSOM” algorithm constructs the constant sized PSOM on
a dynamically determined sub-grid and keeps the computational effort constant when
increasing the number of training points. Our result suggest an excellent cost–benefit
relation when using more than four knots per axes.

(ii) An alternative to improve the mapping accuracy is the use of the “Chebyshev
spaced PSOM” exploiting the superior approximation capabilities of the Chebyshev
polynomials for the design of the internal basis functions. This imposes no extra effort
but offers a significant precision advantage when using four or more knots per axes.

7 Appendix A: Basis Functions

A favorable choice for is the multidimensional extension of the well known
Lagrange polynomial. The Lagrange formula describes the unique polynomial of de-
gree passing through support points

(4)

where the Lagrange factors are determined by

(5)

We extend now the one-to-one-dimensional ( ) Lagrange interpolation for-
mula (4) to -to- dimensional mapping to , using a knot set of supporting
vectors laying on a chosen rectangular hyper-grid (before ). To clarify this
we write it here once in long form: becomes
(the left upper index indicates here the vector component number); the support point
coordinate becomes a vector . The knot set
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Figure 10: Example of a dimensional mapping manifold with a knot
set in orthonormal projection. Note the rectangular structure and the non equidistant
spacing of the .

containing obviously
knots. Figure 10 illustrates an example with , and

.
If we identify the knot by its knot index numbers ,

, we can expand equation (2) to

(6)

with
(7)

The sum over expands to the set of all possible indexes tuples ,
. The PSOM algorithm is invariant to rescaling of the

axes.
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