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Abstract:

In this paper we discuss the “Parameterized Self-
organizing Maps” (PSOM) as a learning method for
rapidly creating high-dimensional, continuous mappings.
The PSOM can be viewed as the continous generaliza-
tion of the discrete topology preserving map build by
Kohonen’s SOM algorithm. By making use of available
topological information the PSOM shows excellent gen-
eralization capabilities from a small set of training data.
Unlike most other existing approaches that are limited to
the representation of input-output mappings, the PSOM
provides as an important generalization a flexibly usable,
continuous associate memory. This allows to represent
several related mappings — coexisting in a single and co-
herent framework.

We present application examples for simultaneous
learning of robot forward and backward kinematics,
concepts for an integrated redundancy control scheme,
and the application to gesture recognition in a human-
machine-interface. All profit from the approximation ac-
curacy gained from only a few training examples.

1 Introduction

Many learning tasks can be formulated as mapping pro-
cess. l.e. robotics requires the availability of precise
sensorimotor mappings — able to transform between var-
ious motor, joint, sensor, and abstract physical spaces.
The construction of required relationships from empiri-
cal training data is a challenge for adaptive and learn-
ing methods. Unfortunately, many neural network ap-
proaches indeed require hundreds or thousands of exam-
ples and training steps. Since the acquisition of this data
is related to cost and effort, this is a major obstacle for the
practical application of those methods.

To make a learning system useful and efficient means
that (i) the learner exhibits good generalization capabil-
ities; (ii) it can benefit already from a small training data
set, and (iii) it uses a quick learning procedure without
fragile learning parameters and without taking too much
iteration time (the growing computing power enables here
more and more elaborated algorithms to compete).

When a high-dimensional, continuous mapping is de-
sired, the PSOM might be a useful candidate. In particu-
lar, if information about the topological order of the train-

ing data is provided, or can be inferred, only a very small
data set is required. In section 2, the PSOM algorithm
is derived from Kohonen’s Self-Organizing Map and the
PSOM'’s auto-associative capabilities are presented.

In section 3.1 we report on a PSOM application for
solving the forward and backward kinematics for a robot
finger. If redundant degrees of freedom are available one
has to pick a configuration from a continuous space of
alternatives. Most solutions of this redundancy problem
are based on some pseudo-inverse control (for a review
see e.g. [2]). However, a more flexible solution should
offer a set of suitable action strategies and should offer
to respond to different types of constraints. Sec. 3.2 sug-
gests an associative memory that completes partial task
specification as a natural solution. But in contrast to spin-
glass type attractor networks, in robotics, we need a con-
tinuous attractor manifold instead of just isolated points.
Here we show that a PSOM can provide the functionality
of representing continuous relations in conjunction with
a favorable flexibility to specify additional goals.

Furthermore, we present GREFIT, a system for
Gesture REcognition based on FInger Tips seen in video
images. Watching the unadorned human hand by a cam-
era, the system can determine the hand posture in a con-
tinuous parametrization. The shape reconstruction can be
conveniently inspected by displaying a hand model, artic-
ulated with 20 degrees of freedom.

2 From SOMsto PSOMs

Teuvo Kohonen [3] formulated the Self-Organizing Map
(SOM) algorithm as a mathematical model of the self-
organization of topographic maps, which are found in
brains of higher animals. The SOM consists (usually)
of a two-dimensional array A of processing units or for-
mal “neurons”. Each neuron has a reference vector wy
attached, which points in the embedding input space X.
A presented input x will select that neuron a* with w,
closest to the given input: a* = argminy, . 5 [|[War — x||.
This competitive mechanism tessellates the input space
into discrete patches — the so-called Voronoi cells.

The Kohonen learning rule (see e.g. [3]) generates a
dimension reducing, topographic mapping from a high-
dimensional input space to a m-dimensional index space
of neurons in the array A. Topographic order means that



neighboring neurons are responsible for similar input sit-
uations (€ X).

How can the SOM-network learn an output, or better a
continuous input—output mapping? The simplest strategy
is the supervised teaching of a constant output value y,
(or vector y, ) per neuron a. The network output is then
F(x) = ya- of the winner neuron a*. The first improve-
ment to increase the output precision is the introduction
of a locally valid /inear map (LLM), a local regression
scheme for each neuron a. The “winner” neuron response
is then given by F/(X) = ya+ + Ba« (X — Wax); i.6. @ Set
of (hyper-) planes approximates the desired function. Un-
fortunately, in general the planes do not match at the bor-
ders of the Voronoi-cells, which will leave discontinuities
in the overall mapping.

The PSOM concept [6] generalizes the SOM in the
following three main points:

e the index space S in the Kohonen map is generalized
to a continuous mapping manifold S € IR™.

e The embedding space X = X @ X°* C R? is
formed by the Cartesian product of the input space and
output space.

o We define a continuous mapping w(:) : s — w(s) €
M C X, where s varies continuously over S C IR™.

The latter defines an embedded manifold M which we
require to pass through all supporting reference vectors
w, and write w(-) : S — M C X as weighted sum:

w(s) = Z H,(s)wa . (1)

acA

This means that, we need a ““basis function” H,(s) for
each formal neuron or “node”, weighting the contribu-
tion of its reference vector (= initial “training point”) w .
The H,(s) depend on the location s relative to the node
position a, and also on all other nodes A (however, we
drop in our notation the dependency Ha(s) = Ha,a(s)
on A).

A suitable set of basis functions can be constructed
in several ways but must meet two conditions: (i) the
hyper-surface M shall pass through all desired support
points (orthonormality), i.e. at those points, only the lo-
cal node contributes Hy,,(a;) = d;; ; VYV aj,a; € A;
(if) the sum of all contribution weights must be one:
Y aca Ha(s) = 1, Vs (partition-of-unity).

A simple construction of basis functions H,(s) be-
comes possible when the topology of the given points is
sufficiently regular. A particularly convenient situation
arises for the case of a multidimensional rectangular grid.
In this case, the set of functions H,(s) can be constructed
from products of one-dimensional Lagrange interpolation
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Figure 1: The continuous mappingw(:) : $ - M C X
builds aimage of the right side S in the embedding space X, as
illustrated by the dotted test grid.

polynomials. Fig. 2 depicts three (of nine) basis functions
H,(s) for the m = 2 dimensional example with a 3x3
rectangular node grid A shown in Fig. 1.
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Figure 2: Three of the nine basis functions H.(-) for a
3 x 3 PSOM with equidistant node spacing A = {0, 1,1} ®
{0, 1,1}. The remaining six basis functions are obtained by
90° rotations.

Specifying for each training vector w, a node location
a € A introduces a topological order between the train-
ing points: training vectors assigned to nodes a and a’,
that are adjacent in the lattice A, are perceived to have
this specific neighborhood relation. The effect is impor-
tant: it allows the PSOM to draw extra curvature infor-
mation from the training set. As we explore later, this is
the essential reason for the favorable generalization capa-
bilities of the PSOM (see below Fig. 7-9).

When M has been specified, the PSOM is used similar
to the SOM: (i) given an input vector x, find the best-
match position s* on the mapping manifold S by mini-
mizing the distance function dist(-)

s* =s(x) = argmin dist (w(s), x). )
VseS

(if) The output of the PSOM in response to the input
x is the surface point w(s*). This output w(s*) can be
viewed as an associative completion of the input space
component of x — if the distance function dist(-) (in
Eq. 2) depends only on the input components of x (be-
longing to X™). Or, in other words, the function dist(-)



Figure 3: A (trivial) mapping example of Eq. 4: (a) The3x3
training pointslay on asanted plane (=Fig. 1); thetest set isthe
gridinfront. (b) s™ setresulting fromEq.2. (c) Theimagein
X lays on the {w, }-defi ned plane. This (non-demanding) task
shows the ability of associative-completion and the non-linear
mapping behavior — back and forth.

actually selects the input subspace X®: since for the
determination of s* (Eqg. 2) and, as a consequence, for
w(s*), only those components of x matter, that are re-
garded in the distance metric dist(-). A suitable defini-
tion is
d
dist(x,x") =Y pi (zx — 7})*, pr 0. (3)
k=1

which selects all components & with non-zero py, as be-
longing to the input subspace; output are components &
with p;, = 0. By changing the coefficients p,, the PSOM
mapping direction can be (e.g.) reversed on demand.

The discrete best-match search in the standard SOM
is now replaced by solving the continuous minimization
problem for the determination of s* in Eq.2. A simple
approach isto (i) perform the (SOM-like) discrete best-
match search to find s, = a* in the knot set A, fol-
lowed by (ii) an iterative procedure like the gradient de-
scent. We found the Levenberg-Marquardt algorithm best
suited to find s* in a couple of iterations.

In this scheme M can be viewed as a continuous at-
tractor manifold with a recurrent dynamic. Since M con-
tains the data set {w, }, any at least m-dimensional “frag-
ment” of the data set will be attracted to the completion
w. Any other input will be attracted to the closest mani-
fold point.

Fig. 3 illustrates the PSOM recall-usage in a simple
d = 3 dimensional embedding space X, where the com-
ponents {1, 3} belong to the input space. Only these com-
ponents must be specified as inputs to the PSOM. w(s*)
is the output of the PSOM:

1 Z1
x=| [ ] |+~ s*—wE"or | w(s) 4)
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2.1 Topological Order Adds Model Bias

In the previous sections we showed the mapping man-
ifolds for topologies which were already given. This

stage of obtaining the topological correspondence in-
cludes some important aspects:

1. Choosing a topology is the first step in interpreting a
given data set.

2. Itintroduces a strong model bias and reduces therefore
the variance. This leads — in case of the correct choice
—to an improved generalization.

3. The topological information is mediated by the basis
functions. All examples shown here build on the high-
dimensional extension to approximation polynomials.
Therefore, the examples are special in the sense that
the basis functions are varying only within their class.
Other topologies can require other types of basis func-
tions.

To illustrate this, let us consider a 2D example with
six training points. If only such a small data set is avail-
able, one may find several topological assignments. In
Fig. 4 the six data points w, are drawn, and two plausi-
ble, but different assignments to a 3x 2 node PSOM are
displayed.
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Figure 4: The influence of topological order shown in adata
set (a) with ambiguous assignment to the node grid (b) A € S.
Without extra knowledge, (c) and (d) are equivalently suitable.
Note the test point x and its difference in resulting placements
in the central or border region of the PSOM core mapping area.
Thisimplies differencesin interpretation.



Figure 5: The
mapping within the
test grid (b) simi-
lar in size to train-
ingsgrid (a) iswell-
\ behaved. Extra-
polation far outside
can yield a patho-
% logical situation: (c)
shows the test grid
(b) plus one 1.9
times enlarged.

In the vicinity of the training data points the mapping
is equivalent, but the regions interpolating and extrapo-
lating differ, as seen for the cross-marked example query
point. Obviously, it needs further information to resolve
this ambiguity in topological ordering (e.g. by more sam-

ples).

2.2 Extrapolation Aspects

Now we consider the extrapolation areas, beyond the
mapping region of the convex hull of the reference vec-
tors. Fig. 5 shows a 3 x 3 training grid (a) and the X
-embedding manifold (b) again visualized by a testgrid.
(c) shows the superposition of a further test grid enlarged
by the factor 1.9 (note, in contrast to previous illustrations
with 3D-projections (Fig. 1-3) the PSOM map extrapo-
lates here the pure 2D-problem). Here, the polynomial
nature of the employed basis functions exhibits an in-
creasingly curved embedding manifold M with growing
“remoteness” to the trained mapping area. This property
limits the extrapolation abilities of the PSOM, depending
on the particular distribution of training data.

This leads to the advice: be suspicious, if the best-
match s* is found far outside the given node-set A. A
practical way is to confine the iterative search of s* to a
bounded region in S. In the context of the Chebyshev ap-
proximation theory advisable bounds can be stated more
precisely (for details on the Chebyshev-based PSOM
please consult [7, 9]).

3 Applications:

The PSOM can be favorably applied in task frames which
include one or several continuous mappings (of a known
topology). The training points are ordered by a SOM —
or if known — can be used straight in constructing the
PSOM manifold. In the latter case, the iterative “SO”-
part is skipped and the “learning” is instantaneous. Thus
we gain a versatile mapping tool which requires a surpris-
ingly small number of training examples to achieve good

mapping accuracy.
This section demonstrates some examples from the ar-
eas of robotics and adaptive human-machine-interfaces.

3.1 Finger Kinematicsfor a Robot

Fig. 6 shows one of three fingers of the hydraulically
driven TUM robot hand. Its mechanical design allows
roughly the mobility of the human index finger. A car-
danic base joint offers sidewards gyring and full adduc-
tion with two additional coupled joints (in total 3 degree-
of-freedom). For the finger control several coordinate
systems are essential: the joint angles 6, the cylinder pis-
ton positions & and the relative finger tip coordinates 7.
Further configuration dependent quantities are of inter-
est, such as the Jacobian matrices J for force/moment
transformations. All of these quantities can be simulta-
neously treated in one single PSOM allowing to map in
multiple ways. Here we focus on the inverse kinemat-
ics — the classical hard part. Fig. 6 depicts the fingertip
workspace. The “banana” form is traced out when mov-
ing the three joints on a cubical 10x10x 10 grid within
their maximally allowed configuration.
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Figure 6: (left) stroboscopic image of onefinger in asequence
of extreme joint positions. (Rest) Several perspectives of the
workspace envelope 7, tracing out a cubical 10x10x 10 gridin
the joint space §. The arrow marks the fully adducted position,
where one edge contractsto atiny line.

We exercised several PSOMs with nxnxn 9 dimen-
sional data tuples (67, ¢, 7), all equidistantly sampled in g.
Fig. 7a—b depicts a g and an 7 projection of the smallest
training set, n = 3.

To visualize the inverse kinematics ability, we ask the
PSOM to back-transform a set of workspace points of
known arrangement. In particular, the workspace fillin
“banana” set of Fig. 6 should yield a rectangular grid of 6.
Fig. 7c—e displays the actual result. Distortions can be vi-
sually detected in the joint angle space (c), and the piston
stoke space (d), but disappear after back-transforming the
PSOM output to world coordinates (b). The reason is the
peculiar structure; e.g. in areas close to the tip a certain
angle error corresponds to a smaller Cartesian deviation
than in other areas.
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Figure 7: Training data set of 27 nine-dimensional points in
X for the 3x3x 3 PSOM, shown as perspective surface projec-
tionsof (a) thejoint angle g and (b) the corresponding Cartesian
sub-space (following the lines connecting the training samples
allows oneto verify that the “banana’ really possesses a cubical
topology). (c—e) Inverse kinematic result using the grid test
set (=Fig. 6). (c) projection of the joint angle space § (transpar-
ent); (d) the stroke position space & (e) the Cartesian space 7’
(after forward-kinematics of 6).

When measuring the mean Cartesian deviation we get
an already satisfying result of 1.6 mm or 1.0% of the
maximum workspace length of 160 mm. In view of the
extremely small training set displayed in Fig. 7a—b this
appears to be a quite remarkable result.

Nevertheless, the result can be further improved by
supplying more training points. For a growing number
of network nodes the “Local-PSOM” approach offers to
keep the computational effort constant by applying the
PSOM algorithm on a sub-grid (see [9, 7] for details and
further comparison).

Information from Topology: PSOM versus ML P
For comparison reasons, we employed the standard
Multi-Layer-Perceptron with one and two hidden layers
and linear units in the output layer. We found that this
problem is not suitable for the MLP network. Even for
larger training set sizes, we did not succeed in training
them to a performance comparable to the PSOM network.
The question “why does the PSOM perform more that
an order of magnitude better than the MLP?”*, leads us
to the value of topological information. Fig. 8 shows the

Figure 8: A (non-PSOM) network: The 27 training data vec-
tors for the ML P networks: one-way from the input space 7* left
to right the corresponding target output values 6.

Figure 9: PSOM case: The same 27 training data vectors
(=Fig. 8) for the bi-directiona PSOM mapping:  (left) in the
Cartesian space+, (middle) the corresponding joint angle space
g. (Right:) The corresponding node locationsa € A inthe pa-
rameter manifold S. Neighboring nodes are connected by lines,
which reveals the “banana’ structure (see Fig. 7) on the | eft.

27 training data pairs; on the left side, the Cartesian in-
put space 7, one can recognize some zig-zag structure,
but not much more. Fig.9 depicts the PSOM situation:
the PSOM gets the same data-pairs as training vectors
— but additionally, it obtains the assignment to the node
location a in the 3x3x3 node grid illustrated in Fig.9.
If neighboring nodes are connected by lines, it is easy
to recognize the coarse “banana” shaped structure. Us-
ing the curvature information contained in the ordered
data the PSOM could generalize to the reported position-
ing precision of 1%. This topological information is not
available to other techniques, like the MLP or the radial
basis function approach.

3.2 Flexible Use of Redundant DOF

As mentioned earlier, in the presence of excess degrees of
freedom one may specify extra constraints to determine a
robot configuration. The question is how this can be done
in a versatile manner? Here, the PSOM contributes an
elegant way to offer several goal and constraint functions
for flexible usage.

We illustrate the flexibility of the PSOM approach
in the task to position a (3 link, 4 DOF) robot



Figure 10: Solving the Redundancy Problem: Tracking a
point in a danted elliptical path with a 4 DOF manipulator,
using a 5x5x5x5 PSOMand different extra target functions
to resolve the redundancy problem. These secondary goals are
reached — as far as the kinematics allows (see distal and proxi-
mal positions).

in 3D as depicted in Fig.10. The details of this
study are given in [8], here we report only the main
ideas. The embedding space X is spanned by x =
(61,02,03,04, 74,7y,72, cs,C9,c10)T and contains, sim-
ilar to the example before, the angles 6; . 4, the Cartesian
position 7, and derived parameters which encode extra
goal or constraint functions (here three: cg is the differ-
ence (04 — 63)2, ¢ is the elevation angle of link-3 (rela-
tive to the horizontal), and ¢, is the angle between distal
link-4 and the vertical).

This allows to resolve the redundancy problem in var-
ious ways. For example, the goal can be to ...
— (Lazy & fast:) take the minimal joint motion from the
current position to the specified position 7 all we need to
do is to start the best-match search (ps. » = 1) at the best-
match position s},,,.. belonging to the current position,
and the steepest gradient descent procedure will solve the
problem;
— (Chose angle:) give one jointangle 8; (j € {2,3,4})
and specify p; > 0;
— (Coupled joints:) use similar adduction in the two
distal joints (like the finger kinematics): by activating
ps > 0 (to a small value e.g., 0.01) and setting 29 = 0.
Measuring the deviation for the inverse kinematics we
find a mean value of 0.008 in the workspace;
— (Middle flat:) keep the middle segment horizontal: by
specifying the target zg = 0 and pg = 0.01. Fig. 10(left)
reveals that this constraint can not be met in all cases. By
setting pg to only a small value, as a “soft goal”, the accu-
racy of the trajectory is not (significantly) compromised
(see also belowy);
— (Approach from top:) grasp vertically: after spec-
ifying 10 = 0, p1o = 0.01, Fig. 10 (right) shows the
stroboscopic tracking result.

For these different cases, there is no need for different
networks, instead one single PSOM can be utilized. If we
anticipate useful target functions, the embedding space
can be augmented in advance, enabling to construct re-
configurable optimization modules. They are later acti-
vated on demand and show the desired performance. In
conflicting situation, e.g. the distal reaching positions in
the last example, a meaningful compromise is found. As
shown in [7], the input selection coefficients can be made
dynamical p, = p,(t) during the iteration process. l.e.,
secondary goal functions are weighted by p,,(¢), starting
at a small value, which decrease to zero. Primary posi-
tioning goals are not compromised and secondary goals
satisfied as much as possible. This procedure allows to
define priorities of goal functions, which are solved ac-
cording to their rank.

3.3 Hand Gesture Recognition by Video

The last example stays within the topic fingers and hands,
but switches the application domain to human—machine—
interfaces. The GREFIT (Gesture REcognition based on
FiInger Tips) system demonstrates how a computer vi-
sion system can reliably determine the user’s hand ges-
tures. Instead of using an expensive sensing device (like
a data-glove), two standard video camera are employed to
observe the user’s unadorned hand. In the first step, LLM
networks detect the fingertips in one image. Second, the
local stereo disparity around the five finger tips are mea-
sured (between in the two camera images, a standard pro-
cedure). And third, PSOMs are applied to map the found
2D-image information to the desired output: the 3D fin-
ger postures. Furthermore, for demonstration and user-

Figure 11: Hand
shapes and their
3D  reconstruc-
tion  computed
by the GREFIT
system. The
top left image
depicts the fi nger
tips locations
by markers;
(below:) the 16
segments and 20
revolute joints of
the model hand.
The other image
pairs show the
posture  differ-
ences  between
the real and the
rendered hand.




feedback purpose, an artificial hand model displays the
posture.

Fig. 11 shows three snapshot pairs of the GREFIT sys-
tem. The images show in every first row how one camera
sees the user’s hand; and in every second row the hand
model with 16 segments and 20 revolving joints. The
joint angles are controlled by five PSOM finger modules
(4x 4x 5 PSOM). The model accounts for kinematic de-
tails and anatomical properties of the human hand (it does
not include reactive deformations by external forces). By
feeding hand model test data into the system, the recon-
struction accuracy can be evaluated: the average error is
0.1cm and the maximum error for all fingers is well be-
low 0.4cm — again a remarkable result. For more de-
tails about the 3D-reconstruction in stereo images con-
sult [5]. As shown in [4], the system can also operate in
double speed with a single camera (10 Hz on a 200 MHz
PentiumPro). But the results are then less general — in
the sense that it uses the presumption of a finger tendon
coupling which approximates only the naturally relaxed
hand.

4 Discussion and Conclusion

We presented the PSOM as versatile building module
for learning continuous, high-dimensional mappings. As
highlighted by the robot finger example, the PSOM draws
its good generalization capabilities from curvature infor-
mation available through the topological order of only a
few reference vectors {w, }. This topological assignment
can be learned by Kohonen’s SOM learning rule, or — by
construction — if the topological relation of the data is
known. In numerous applications, this case can be of-
ten realized by active, structured sampling of the training
data — often without any extra cost. This mechanism of
incorporating prior knowledge in the network seems very
attractive.

Due to the compactness of the training set, the PSOM
has some overlap with fuzzy networks: An expert defines
a fuzzy class, assigns linguistic names (e.g. “left”, “mid-
dle”, “right stroke position”), and (initially) provides suit-
able output values. In the PSOM learning process, the
grid node values a can be assigned to input-output pairs.
Likewise, names can be alloted to support the interpreta-
tion of the learned knowledge.

The associative mapping concept has several attractive
properties. multiple coordinate spaces can be maintained
and learned simultaneously, as shown for the robot fin-
ger example. This multi-way mapping capability solves,
e.g. the forward and inverse kinematics with the very
same network. This simplifies learning and avoids wor-
ries about inconsistencies of separate learning modules.
As pointed out by [1], the learning of bi-directional map-

pings is not only useful for the planning phase (action
simulation), but also for bi-directional sensor-motor in-
tegrated control.

In the robot finger example a set of only 27 data points
turns out sufficient to approximate the quite non-linear
3 D (inverse) kinematics relation with a mean positioning
deviation of about 1 % of the entire workspace range.

The input selection mechanism enables to add further,
parameterized target functions. These can be utilized to
resolve e.g. redundancy problems which arise when the
primary goal leaves a continuous solution space of pos-
sible alternatives. Here, the PSOM offers to build a bat-
tery of optimizer modules which can be learned within
the same continuous associative memory. When they are
activated, they can influence the best-match search in the
desired manner.

In the GREFIT system the PSOM proved useful and
accurate as well. In constrast to most other gesture recog-
nition systems, the system is not limited to a number of
static postures (e.g. sign language) but exploits the great
variety of possible hand shapes using a contiuous param-
eterization of hand postures. This opens up new appli-
cation areas which depend on gradual information, for
instance CAD or navigating in virtual worlds.
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