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Abstract: A system for learning the pre-grasp positioning task for a robot manipulator is presented. The images
delivered from a gripper mounted camera are analysed using Gabor filters which resemble the spatial response profiles
of receptive fields found in visual cortex neurons. Using a quite small feature set, the system demonstrated efficiency
with respect to speed and accuracy, as well as robustness against changing light conditions.
Furthermore, we compare it to two other approaches, aiming at the same goal: an appearance-based PCA fuzzy control
and a PSOM based Hough-Transform system.

1 Introduction

Neural networks were evolved by nature to enable perception and action. Therefore, artificial neural networks seem as
an appropriate choice for learning one of the most demanding sensor-based manipulation skills – grasping. One of the
main obstacles for industrial applications is the availability of robust and inexpensive sensor–action systems. As the
price and size of reasonable vision systems is decreasing, camera sensors become a popular expansion to robot system.
Traditional robot vision research focuses on the use of explicit world models and how to build them from raw sensor
data. Scene reconstruction is undoubtedly useful, but is expensive and often to complex in a changing real-world
environment. We think that locally operating learning schemes are the best candidates to advance intelligent robot
systems. What are the best feature extraction plans to feed a learning network?

Gabor wavelets proved advantageous for object and face recognition [4], acknowledged for their pose invariance. Here,
we examine the reverse task. Knowing the object, how well can we estimate the pose? What are the best features to
built a working sub-system? How do they compare to other approaches?

System Overview: The overall aim of our system is the structure assembling demonstrated using a set of wooden
pieces including nuts, screws, ledges, and cubes, see Fig. 1. This task can be divided into several smaller ones: a
single part has to be identified, the gripper is brought in a suitable pre-grasp position, the target is firmly enclosed and
gets finally transfered to the desired mating/assembly position with other parts. The robot system consists of a 6 DOF
manipulator (Puma 260) with a camera attached to the parallel yaw gripper.

(a)

Figure 1: The end-effector over the target: (left:
a) the gripper and the hand camera. (Right:) A
“cube” viewed by the hand camera before (b) – and
after the fine positioning (c). Note the tool tips in the
upper rim of (b,c). (b) (c)

Grasping without any alignment help requires that the objects are picked with certain precision. Failures include the
risk of (i) object–gripper collisions, (ii) pushing/displacing something before yaw closure, and (iii) bad object-in-
gripper alignment (creating trouble for later part mating).

Here we discuss the critical pre-grasp phase, i.e. the 3 DOF fine-positioning of the manipulator after an initial coarse
positioning has been completed. This implies that the resting object is visible inside the viewing angle of the hand
camera and its type and vertical position is known. Now the system has to deal with significantly changing appearance
of the target objects with respect to (i) the local lighting situation (occlusion of lamps by the robot itself, interfering
humans, etc.), (ii) image contrast and color (several possible objects), (iii) parallax effects by the camera viewing
from a close and tilted position.
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2 Object Representation

In order to efficiently employ a learning neural network for pose estimation we need a suitable object representation
gained from the sensory input, in our case a camera image. “Suitable” means here, the feature set is of minimal size
providing the desired accuracy and in the following faster learning with fewer neurons.

2.1 Object Representation With Gabor Filters

Biology gave us inspiration: 1987, Jones and Palmer [3] showed by cat visual cortex experiments, that receptive fields
of simple cells fit well to a profile model previously suggested by Daugman 1980 [1]. This model describes the spatial
sensitivity by a 2D extention of Gabor’s work (1946, originally in the time domain). By a local formulation of the
frequency content he created a “localized” Fourier analysis, here written as a complex kernel function:���������
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describes a Gaussian bell function – modulating a planar wave. The wave has the period length
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Figure 2: The 2D Gabor filter (right)
fits simple cell spatial response profile
(left) of receptive fields in cat striate
cortex neurons [3]. See also Fig. 6.

Equation 1 can be called mother wavelet and a complete family of self-
similar daughter wavelets (sometimes called jet) can be constructed by the
generating function��:�;+<�=>�?�����
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Our system uses a collection of ` those artificial neurons, all looking at the same image but each with a different
receptive field. Thus the seen object gets represented by ` values, i.e. the scalar product of the image by the appropriate
Gabor filter mask. For a larger group of neurons, which differ only in their center position

�YU��ZV'	
, the procedure can be

speeded up by performing a convolution and implementing it as a product in the 2D-Fourier space.

2.2 Object Representation Using Eigenimages and PCA

An other compact object representation, based on the object’s appearance, became popular [5, 9]. Here, the Principal
Component Analysis (PCA) technique determines the eigenimages of a collection of a object images. Each image

0
,

e.g. of size `7bc` pixel, is considered as ` � -dimensional vector dfe . The ( ` � bc` � dimensional) covariance matrix g
is defined as g �ih 8 akj�lenmfo � d�e �
pd 	�� d�e �qpd 	sr with the mean image

pd �ih 8 afjtleum$o d�e . The eigenimages are the
eigenvectors v>w of the (symmetric and positive) matrix g . The vKw corresponding to the \ largest eigenvalues span
a new orthogonal base representing the principal components of the initially analyzed image collection (see Fig. 8).
Even for small images, with e.g. 10000 pixels, the matrix algebra requires special algorithms or special network
architecture in order to remain computationally tractable [5, 6]. A new image d is then represented by the \ scalar
products x �y� v r o d � v r� d �zX+X+Xz� v r: d 	 rN{5| : .

2.3 Object Representation Using the Hough Transformation

The Hough Transformation (HT) is a classical image analysis method for curve detection. It uses the duality between
points on a curve and parameters of that curve. In principle any analytical curve can be detected, but in reality the
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computational costs grow exponentially with the number of parameters required [2]. As outlined in [8], we chose to
stay with the simplest curve: a straight line with two describing parameters, e.g. angle

L
(to the x-axes) and its normal

distance � to the origin (0,0). A discretized
� � �BL>	 -region of interest – also called the accumulator – is chosen and the

image is systematically searched for pixels contributing to a given line. The usual procedure is to binarize the result
of an edge-detection filter, as illustrated in Fig. 3.
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Figure 3: (a,b) Two objects seen by the hand camera here with vertical viewing angle. (c) The binarized edge-preprocessed
nut image which becomes Hough transformed: each pixel corresponds to a sinusoidal curve in the Hough parameter space and
increases all accumulator cells on this path. (d) shows the accumulator as intensity image and (e) as 3D rendering. HT-Curves from
pixels lying on a line intersect in one HT-point, resulting in high counts. (f) Applying the so-called “back-transform” [2] algorithm
sharpens the peaks and makes their localization more secure. Mapping to the rotation displacement is straight-forward since each
HT-peak codes for one line in image space. In the optimal case, the four (HT-peak) identified lines mark exactly the outline of the
target object.

3 Experimental Setup and the Gabor System in more Detail

The “Cubical” Challenge: For comparison reasons we focus in the following on one target object, the cubical
wooden piece already shows in Fig. 1. Its size is little smaller than the open gripper and calls therefore for grasping
tolerance of about 2 mm and 5-8 � . The wooden “cube” is challenging for machine vision: due to the widely rounded
corners and the three axial screw holes (creating shadow), its facial surfaces are actually ring shaped. The contour,
seen from an tilted viewing angle, resembles an egg with moving bumps when rotating the “cube”. One way to avoid
this problem, is to turn the end-effector such, that for image grabbing the camera is looking vertically downwards (as
the Hough system actually does, see Fig. 3a; compare 4). The price is a robot transfer delay (decrease of operation
speed) and extra kinematic restrictions within the robot’s workspace.

Figure 4: The perception-action loop.
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Pre-Grasp Procedure: In order to allow vivid and accurate operation we keep the gripper vertical and subdivide
the fine positioning in two parts: (i) a fast and coarse – pure translational part and (ii) a rotational/translational fine
part. Fig. 4 displays the simplified procedure in an UML-activity diagram. The grabbed image is preprocessed and
the object’s center of gravity in image coordinateds

���9���,	
mapped by the first neural network (MLP) to the Cartesian

translational command ( � ��� � � ), required to move the robot over the target object. If the displacement is too large
– therefore the parallax effects too disturbing – the robot moves first and looks again (top loop, �	� e�

� ��� \ \ ).
The rotational adjustments is determined from an

���f����	
-centered region of interest (ROI with size 50 b 50 pixel). A

small set of features � is extracted and a second neural network (also MLP) maps to the shortest rotational approach
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command ��� . Executing the robot move command prepares the system for the next step, which is usually the force-
torque guarded grasping of the object. Alternatively, the loop can be closed for testing purposes.

Preprocessing: The grabbed color image of size 192 b 144 pixel is reduced to one channel by a pixel-wise maximum
selection in the R,G, and B channel. Then the mean and standard deviation of all pixel values is computed and a global
linear pixel intensity transformation is applied which normalizes the image to the training standard conditions (i.e. the
same intensity average and variance).

Object Localization: The normalized image is binarized and a standard blob detection algorithm selects the object
center. If the image is not cluttered, a fast row and columnwise histogramming is sufficient. The first neural network
NN1, a 2-3-2 resilient backprop accelerated MLP, maps to the desired translational correction

� � ��� � �
	 , which is
used in the Cartesian transfer command and send to the robot.

Object Rotation and Angle Wrapping: The second neural network (NN2) has to code for the shortest rotational
correction ��� . Here occurs the problem of angle wrapping ( � � ������� ] � ) and the rotation object symmetry count� , e.g., for the cube � � �

(i.e. same appearance for ��� � ] � , 90 � , 180 � , 270 � ). We solve this with an angular
sine/cosine pair encoding for the MLP-output layer

	 ��J�OCQ�� � �
� 	 � a � G�IKJ+� � ��� 	Z� and the back-transformation �
� � h
� atan

- 	a 2 X (3)

Selecting the Training Data Set: The desired nominal grasping position is “demonstrated” to the system by guiding
the robot once (e.g. via a 3D-mouse) in the correct pose and defining the approach distance. Starting from there, a
set of images is automatically aquired. An image gets grabbed from the hand camera after displacing the robot by the
value

� � � ��� � ��� �
� 	 { E ���D�
�>S b E ���D�
�>S b E ��� ���BS (for NN1
� � %�� \ \ and NN2
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� � h���] � 8 � ; the

training set is sampled from a ��b��9b�� -grid, while the test set is randomly sampled). The image processing results in
association with the desired robot command

� � ��� � �
	 for NN1, and ��� for NN2, provide the training data for the
supervised learning phase of the neural networks.

Selecting the Gabor Filter Set: Since the optimal feature set for our task was unknown, we carried out some
systematic simulation tests with varying Gabor filter combinations, see Fig. 5.

Figure 5: Gabor Feature Selection: Shown is the obtained RMS positioning accuracy for various
Gabor filter combinations. Each was a simulation experiment repeated 10 times including a train-
ing phase of NN2 and an evaluation phase for the entire system. The best experiment’s filter set is
displayed below.
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The winning configuration was a surprise: it consists of only nine different center positions on a � b�� grid centered
in the (

� ] b � ]�U 0 �
) image (

U��ZV {�� h � � %�� � % ��� U 0 � ). At each position we centered four even Gabor filters with
1 � � ]�U 0 � ,

& � h % X � U 0 �
, and

L {�� ] � ��� � � �
�>] � � h � � ��� as depicted in Fig. 6. The first surprise was, that already
36 image features are sufficient for the rotation estimation task. The second was, that the system does not prefer higher
Gabor frequencies which would be more sensitive to the edge positions.

Figure 6: (Left:) Locations of the receptive
fields centers �! #"%$'& in the ROI-image. (Right:)
Gabor filter set with four orientations, shown
only for the middle location. The other 32 fil-
ters are shifted versions. See also Fig. 2

4 Experimental Results – a Comparison

4.1 The Gabor based System

Accuracy: For the Gabor system we achieved an asymptotic RMS positioning accuracy of
]
X ]�� \ \ ,

]�X % \.\ (in�����
direction) and

]
X � � (in � ) after a couple of iterations in the fine-positioning loop in Fig. 4. This is far more than

4



Table 1 Gabor System PCA System Hough System

Accuracy with Good Illumination (0.5, 0.7, 6.6 � ) after 1 o� loops (4 DOF:
����������� � )

(
� 8 \ \ �B� 8 \ \ � � 8 � ) (0.1, 0.3, 1.2 � ) after 2 o� loops (0.4, 0.7, 0.6 � ) (0.5, 0.8, 1, 1.4 � )
Save Grasp requires 1 o� loops 5 loops 2 o� loops

Accuracy with Poor Illumination (0.2, 0.2, 1 � ) after 6 o� loops (3.1, 1.0, 6.1 � ) —
Save Grasp requires 3 o� – 5 o� loops 20 loops [miracle]

Controller 2 b MLP 4 b Neuro-Fuzzy PSOM + Model
� Feature Generation by 36 general filter masks 3 eigenimages line HT

Total Time per Loop Iteration 1–2 sec 1–2 sec 1–2 sec
Training Time � 1 min 3 hours � 1 min

required. For reasonably good illumination conditions one short – pure translational (termed “half” loop) – and one
full positioning loops is sufficient (half+full=“

h o� ”), see Tab. 1.

Robustness – Illumination: Changing local lighting conditions are a real threat to many vision based control
algorithms. The described preprocessing method proved quite efficient: with stepwise dimmed lights and furthermore
changing to a single sideward lamp (producing bad cast-shadows), we found that the performance degraded only in
the speed of convergence. The basic operation was stable up to extremely poor illumination conditions.

(a) (b) (c) (d) (e)

Figure 7: (a-c) Poor image conditions –
successfully mastered. (d-e) other target
objects (block (d) used the same NN2, the
screw (e) a different).

Different Object Colors and Background: The training object (yellow cubical) shows very good contrast to the
gray table surface. But the fine-positioning system works without modifications also for comparable objects, for other
colors, and under bad conditions, e.g. poor brightness contrast and dim light. As Fig. 4.1 displays, partly covered
objects or even textured background did not bring the grasping system to tumble.

4.2 The PCA–Fuzzy Control System [7, 9]

Figure 8: The first three eigenimages v o � v � � v�� serve as image feature
mask for the rotational part of the PCA-system (see also Sec. 2.2) [7].

The robot commands were trained and later recalled by a B-spline neuro-fuzzy controller (FC). Since the calculation
and processing of eigenimages is quite expensive, only three ( \ � � ) were computed for the rotational part. Since
only 3 features are extracted for a new image, the system has to repeat the positioning loop more often in order to
achieve the grasp precision. The total training time is more than three hours (a day for \ � �

, weeks for \ � � ).
The system is robust against change in object color and illumination but speed and positioning accuracy degraded with
decreasing illumination conditions, see Tab. 1.

4.3 The Hough Transformation System

This system additionally learned the object height (4 DOF) and employed a system setup with a larger 560 Puma
robot and a three-fingered articulated hydraulic hand for grasping. We used a 3 b 3 b 3 PSOM to learn the translations
from 27 images and a object model to validate the gained HT-peak information [8]. The Hough Transform method
is able to extract (in comparison) the most information out of a good image. For the HT, a good image contains only
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clear polygonal edges. This requires a significant amount of image preprocessing including smoothing, edge-filtering,
binarization, segmentation, and masking tricks to remove disturbing edges inside the object contour (see empty outline
in Fig. 3c). However, the system works very well under normalized conditions – with good object-background contrast,
no clutter, good illumination, and a viewing angle (strictly vertical) which lets the rounded corners disappear.

5 Summary and Conclusion

We presented a pre-grasp fine positioning scheme for a robot camera-in-hand system. It employs a small set of only
36 Gabor masks probing the image for spacial frequency content at nine locations and four orientations. The feature
set is universal for a family of similar objects and can be easily adapted and/or enriched for a broader spectrum of
shapes. The preprocessing stage performs an image intensity adaptation and guidance of the rotational sensor (ROI).
The overall system is robust with respect to the image condition, e.g. changes in illumination and some amount of
occlusions and clutter.

We compared the described system to previous work implemented in the same lab, pursuing the same goal – but
applying different techniques.

The PCA and neuro-fuzzy controlled approach [9] uses a even smaller feature set based on eigenimages specialized
for the appearance of one single object type (Fig. 8 shows three). The small number is mainly a compromise to balance
between the exponentially growing training time [7] and the information gained. Of course, as more useful information
the system can extract, as fewer iterations it needs for precise grasping. The main disadvantage of the PCA-FC system
is the limited training and performance speed. On the other hand, the PCA-system display reliability and robustness.

The Hough Transform approach employs classical image processing techniques [8]. It delivers good results under
highly normalized conditions. The main reason for the poor robustness is the focus on differential image information
(edges), the associated noise sensitivity, and the information loss in the binarization step. The countermeasures are
expensive (e.g. contour following, region growing, etc.) and do not fundamentally solve the problem. Furthermore, a
model of the expected HT-peak constellation is needed, in order to monitor and guide the peak-detection algorithm.

Summarizing, the Gabor-filter based system uses very favorably image processing techniques, working also in visual
cortex neurons. Employing only 36 “simple cells” we built a technical system which was (i) calibration free (e.g. no
camera calibration required), (ii) direct (no expensive image processing like segmentation, region growing, etc.), and
(iii) fast (Gabor feature detection and ANN mappings could by implemented in real-time). It demonstrated (iv) the
robustness real-world capable system require.
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