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Abstract:

Precise sensorimotor mappings between various motor,
joint, sensor, and abstract physical spaces are the basis for
many robotics tasks. Their cheap construction is a chal-
lenge for adaptive and learning methods. However, the
practical application of many neural networks suffer from
the need of large amounts of training data, which makes
the learning phase a costly operation – sometimes beyond
reasonable bounds of cost and effort.

In this paper we discuss the “Parameterized Self-
organizing Maps” (PSOM) as a learning method for
rapidly creating high-dimensional, continuous mappings.
By making use of available topological information the
PSOM shows excellent generalization capabilities from a
small set of training data. Unlike most other existing ap-
proaches that are limited to the representation of a input-
output mappings, the PSOM provides as an important gen-
eralization a flexibly usable, continuous associate memory.
This allows to represent several related mappings – coex-
isting in a single and coherent framework.

Task specifications for redundant manipulators often
leave the problem of picking one action from a subspace
of possible alternatives. The PSOM approach offers a flex-
ible and compact form to select from various constraint and
target functions previously associated.

We present application results for learning several kine-
matic relations of a hydraulic robot finger in a single
PSOM module. Based on only 27 data points, the PSOM
learns the inverse kinematic with a mean positioning accu-
racy of 1 % of the entire workspace. Another PSOM learns
various ways to resolve the redundancy problem for posi-
tioning a 4 DOF manipulator.

1 Introduction

Many tasks in robotics require the availability of precise
sensorimotor mappings – able to transform between vari-
ous motor, joint, sensor, and abstract physical spaces. The
construction of required relationship from empirical train-
ing data is a challenge for adaptive and learning meth-
ods. Unfortunately, many neural network approaches in-
deed require hundreds or thousands of examples and train-
ing steps. Since the acquisition of this data is related to

cost and effort, this is a major obstacle for the practical
application of those methods.

To make a learning system useful and efficient in
robotics means that the learner provides good general-
ization capabilities – based on a small training data set,
and uses a quick learning procedure without fragile learn-
ing parameters and without taking too much iteration time
(with growing availability of computing power this need is
increasingly relaxed, allowing also more elaborated algo-
rithms to compete).

In this contribution we present the “Parameterized Self-
Organizing Map” (PSOM) approach, which is particularly
useful in situation where a high-dimensional, continuous
mapping is desired. If information about the topologi-
cal order of the training data is provided, or can be in-
ferred, only a very small data set is required. In section
2 the PSOM algorithm is derived from Kohonen’s Self-
Organizing Map and the PSOM’s auto-associative capa-
bilities are presented.

In section 3 we report on a PSOM application for solv-
ing the forward and backward kinematics for a robot fin-
ger. If numerous degrees of freedom are available one has
to pick a configuration of a continuous space of alterna-
tives. Most solutions of this redundancy problem are based
on some pseudo-inverse control (for a review see e.g. [2]).
However a more flexible solution should offer a set of suit-
able action strategies and should offer to respond to dif-
ferent types of constraints. Sec. 4 suggests an associative
memory that completes partial specification of a incom-
plete task specification as a natural solution. But in con-
trast to spin-glass type attractor networks, in robotics, we
need a continuous attractor manifold instead of just iso-
lated points. Here we show that a PSOM can provide the
functionality of representing continuous relations in con-
junction with a favorable flexibility to specify additional
goals.

2 From SOMs to PSOMs

Kohonen [3] formulated the Self-Organizing Map (SOM)
algorithm as a mathematical model of the self-organization
of topographic maps, which are found in brains of higher
animals. Fig. 1 illustrates a two-dimensional array

�
of

processing units or formal “neurons”. Each neuron has



a reference vector ��� attached, which points in the em-
bedding input space

�
. A presented input � will se-

lect that neuron ��� with � � closest to the given input:���
	 argmin� ���� � � ����� � � . This competitive mecha-
nism tessellates the input space in discrete patches – the
so-called Voronoi cells (see light gray border lines).
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Figure 1: The “Self-
Organizing Map”
(“SOM”) algorithm
builds a topographic
map and tessellates the
input space to discrete
Voronoi-cells.

The Kohonen learning rule (see e.g. [3, 6]) generates
a dimension reducing, topographic mapping from a high-
dimensional input space to a � -dimensional index space
of neurons in the array � . Topographic order means that
neighboring neurons are responsible for similar input situ-
ations � � . The main features are: (i) the generation of
the topographic order and, (ii) as a result, each learning
step can profitably be shared among neighboring neurons,
allowing to improve the convergence properties of the al-
gorithm.

How can the SOM-network learn a smooth continuous
input–output mapping? A simple strategy is the supervised
teaching of a constant output value ��� (or vector y � ) per
neuron � . The network output is then ������� 	!���#" of the
winner neuron ��� . The first improvement to increase the
output precision is the introduction of a locally linear re-
gression scheme for each neuron � and returning the “win-
ner” neuron’s output: �������$	!� �#"&%(')�#" �*� � � �#" � ; i.e.
a set of (hyper-) planes approximate the desired function.
Unfortunately, in general the planes do not match at the
borders of the Voronoi-cells, which may leave discontinu-
ities in the overall mapping.

The PSOM concept [5] can be seen as the generalization
of the SOM with the following three main extensions:

+ the index space � in the Kohonen map is generalized to
a continuous mapping manifold �,�.- /10 .

+ The embedding space
� 	 �3254768�:9<;>= ? - /A@ is

formed by the Cartesian product of the input space and
output space.

+ We define a continuous mapping �B� � �DCFEHGIJ�B�*EK�D�LM?,�
, where E varies continuously over �ON,- / 0 .

We require that the embedded manifold
L

passes through
all supporting reference vectors �H� and write �B� � �PC$�3I

LQ?,�
as weighted sum:

�B�*EK�R	TS�����U � �*EK�V� � (1)

This means that, we need a “basis function” U �W�*EK� for
each formal neuron or “node”, weighting the contribution
of its reference vector (= initial “training point”) �H� . The

U � �*EK� depend on the location E relative to the node position� , and also all other nodes X (however, we drop in our
notation the dependency U � �YE>�R	 U �KZ � �*EK� on X ).
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Figure 2: The mapping [�\^] _a`
bdcfehgji builds a con-
tinuous image of the right side b in the embedding space i , as
illustrated by the dotted test grid.

A suitable set of basis functions can be constructed in
several ways but must meet two conditions: (i) the hyper-
surface

L
shall pass through all desired support points (or-

thonormality), i.e. at those points, only the local node con-
tributes U ��kl�Y�nmK�o	qp 2 mPrtsH� 2vu �wm �xX ; (ii) the sum of all
contribution weights must be one: y ���� U � �*EK�1	{z u s|E
(partition-of-unity).

A simple construction of basis functions U � �YE>� be-
comes possible when the topology of the given points is
sufficiently regular. A particularly convenient situation
arises for the case of a multidimensional rectangular grid.
In this case, the set of functions U �}�*EK� can be constructed
from products of one-dimensional Lagrange interpolation
polynomials. See [7] for details.

Specifying for each training vector �H� a node location�q�qX introduces a topological order between the train-
ing points: training vectors assigned to nodes � and ��~ ,
that are adjacent in the lattice X , are perceived to have this
specific neighborhood relation. The effect is important to
note: it allows the PSOM to draw extra curvature informa-
tion from the training set. Such information is not available
within other techniques, such as the RBF approach and is
the essential reason for the generalization capabilities of
the PSOM (see below Fig. 5–7).

When
L

has been specified, the PSOM is used similar
to the SOM: given an input vector � , (i) find the best-



match position E� on the mapping manifold � by minimiz-
ing the distance function ������� � � �

E � 	dEn�����o	 argmin��� �
	 �
���������B�*EK� u ����� (2)

(ii) The surface point �B�*E�>� serves as the output of the
PSOM in response to the input � . The output �B�*E�� � can
be viewed as an associative completion of the input space
component of � if the distance function �
���� � � � (in Eq. 2)
is chosen as the Euclidean norm applied only to the in-
put components of � (belonging to

��� �
). Thus, the func-

tion ������� � � � actually selects the input subspace
�32 4

, since
for the determination of E#� (Eq. 2) and, as a consequence,
of �B�*E#��� , only those components of � matter, that are re-
garded in the distance metric �
����� � � � . A suitable definition
is

�
����� �*� u � ~ �o	 @S����� � � ��� � � � ~ � ���
� (3)

which selects all components � with � ����� as belong-
ing to the input subspace; output are components � with� � 	 � . By changing the coefficients �! the PSOM the
mapping direction can be (e.g.) reversed, as illustrated in
Fig. 3.
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Figure 3: “Continuous associative memory” supports multiple
mapping directions. The specified " vector selects different sub-
spaces (here symbolized by #$ , #% and #& ) of the embedding space
as inputs. Values of variables in the selected input subspaces are
considered as “clamped” (indicated by a tilde) and determine the
values found by the iterative least square minimization (Eq. 2).
for the “best-match” vector [�\�')(l_ . This provides an associative
memory for the flexible representation of continuous relations.

The discrete best-match search in the standard SOM
is now replaced by solving the continuous minimization
problem for the determination of E � in Eq. 2. A sim-
ple approach is to first perform the (SOM-like) discrete
best-match search to find E+* =-,�.v= 	 ��� in the knot set X ,
followed by an iterative procedure like the gradient de-
scent. We found the Levenberg-Marquardt algorithm [4]
best suited to find E� in a couple of iterations.

In this scheme
L

can be viewed as a continuous attrac-
tor manifold with a recurrent dynamic. Since

L
contains

the data set /�� �10 , any at least � -dimensional “fragment”
of the data set will be attracted to the completion � . Any
other input will be attracted to an interpolation manifold
point.

3 Application: The Robot Finger
Kinematics

This section presents the results of applying the PSOM
algorithm to the task of learning the kinematics of a 3
degree-of-freedom robot finger of a three-fingered modular
hydraulic robot hand, developed by the Technical Univer-
sity of Munich. The finger is actuated by spring-loaded
oil cylinders driven by a remote “base station” that pro-
vides the hydraulic pressure. Its mechanical design allows
roughly the mobility of the human index finger, scaled up
to 110%. A cardanic base joint (2 DOF) offers sidewards
gyring of 2Dz�3
4 and full adduction with two additional cou-
pled joints (1 DOF). See Fig. 4.

In the case of the finger, there are several coordinate sys-
tems of interest, e.g. the joint angles 56 , the cylinder piston
positions 57 , one or more finger tip coordinates 58 , as well as
further configuration dependent quantities, such as the Ja-
cobian matrices 9 for force/moment transformations. All
of these quantities can be simultaneously treated in one sin-
gle PSOM allowing to map in multiple ways, as indicated
in Fig. 3. Here we present results of the inverse kinemat-
ics, the classical hard part. When moving the three joints
on a cubical 10

6
10
6

10 grid within their maximal config-
uration space, the fingertip will trace out the “banana” grid
displayed in Fig. 4 (confirm this workspace with your fin-
ger).

We exercised several PSOMs with n
6

n
6

n nine dimen-
sional data tuples ( 56 u 57 u 58 ), all equidistantly sampled in 56 .
Fig. 5a–b depicts a 56 and an 58 projection of the smallest
training set, :B	<; .

To visualize the inverse kinematics ability, we ask the
PSOM to back-transform a set of workspace points of
known arrangement. In particular, the workspace filling
“banana” set of Fig. 4 should yield a rectangular grid of 56 .
Fig. 5c–e displays the actual result. Distortions can be vi-

Figure 4: a–d: (a) stroboscopic image of one finger in a se-
quence of extreme joint positions. (b–d) Several perspectives of
the workspace envelope => , tracing out a cubical 10 ? 10 ? 10 grid
in the joint space =@ . The arrow marks the fully adducted position,
where one edge contracts to a tiny line.
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Figure 5: a–b and c–e; Training data set of 27 nine-dimensional
points in i for the 3 ? 3 ? 3 PSOM, shown as perspective sur-
face projections of the (a) joint angle =@ and (b) the corresponding
Cartesian sub space. Following the lines connecting the training
samples allows one to verify that the “banana” really possesses
a cubical topology. (c–e) Inverse kinematic result using the grid
test set displayed in Fig. 4. (c) projection of the joint angle space=@ (transparent); (d) the stroke position space =� ; (e) the Cartesian
space =>�� , after back-transformation.

sually detected in the joint angle space (c), and the piston
stoke space (d), but disappear after back-transforming the
PSOM output to world coordinates (b). The reason is the
peculiar structure; e.g. in areas close to the tip a certain an-
gle error corresponds to a smaller Cartesian deviation than
in other areas.

When measuring the mean Cartesian deviation we get
an already satisfying result of 1.6 mm or 1.0 % of the
maximum workspace length of 160 mm (using a test set of
500 randomly chosen positions). In view of the extremely
small training set displayed in Fig. 5a–b this appears to be
a quite remarkable result.

Nevertheless the result can be further improved by sup-
plying more training points. For a growing number of net-
work nodes the “Local-PSOM” approach offers to keep the
computational effort constant by applying the PSOM algo-
rithm on a sub-grid, see [8, 7].

PSOM versus MLP: For comparison reasons, we em-
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Figure 6: The 27 training data vectors for the Back-propagation
networks: (left) in the input space => and (right) the corresponding
target output values =@ .
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Figure 7: The same 27 training data vectors (cmp. Fig. 6) for
the bi-directional PSOM mapping: (left) in the Cartesian space => ,
(middle) the corresponding joint angle space =@ . (Right:) The
corresponding node locations ����� in the parameter manifoldb . Neighboring nodes are connected by lines, which reveals now
the “banana” structure on the left.

ployed the standard Multi-Layer-Perceptron with one and
two hidden layers and linear units in the output layer. We
found that this problem is not suitable for the MLP net-
work. Even for larger training set sizes, we did not suc-
ceed in training them to a performance comparable to the
PSOM network.

Why does the PSOM perform more than an order of
magnitude better than the back-propagation algorithm?
Fig. 6 shows the 27 training data pairs; on the left side,
the Cartesian input space 58 , one can recognize some zig-
zag structure, but not much more. Fig. 7 depicts the PSOM
situation: the PSOM gets the same data-pairs as training
vectors — but additionally, it obtains the assignment to
the node location � in the 3

6
3
6

3 node grid illustrated
in Fig. 7. If neighboring nodes are connected by lines, it
is easy to recognize the coarse “banana” shaped structure.
Using the curvature information contained in the ordered
data the PSOM could generalized to the reported position-
ing precision of 1%. This topological information is not
available to other techniques, like the MLP or the radial
basis approach.
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Figure 8: Tracking a point in a slanted elliptical path with a 4 DOF manipulator, using a � ?�� ?�� ?���� b�� e and three different extra target
functions to resolve the redundancy problem: (left) with maximal similarity of the last two joints; (middle) with horizontal middle arm
segment; (rigth) with vertical distal arm segment – as far as possible.

4 Application: Flexible Use of Re-
dundant DOF

As mentioned earlier, in the presence of excess degrees of
freedom one may specify extra constraints to determine a
robot configuration. The question is how this can be done
in a versatile manner? Here, the PSOM contributes an el-
egant way to offer several goal and contraint functions for
flexible usage.

We illustrate the flexibility of the PSOM approach in the
task to position a 4 DOF robot in 3D as depicted in Fig. 8.
The simulated robot consists of a vertical revolute joint

6 �
and three horizontal ones

6
����� 	 with link lengths 0,1,0.7,0.6


. For the construction of a PSOM, i.e. the configuration
manifold of the arm, we choose an 3 6 3 6 3 6 3 grid cover-
ing the joint range 56 ��� ��������������?�� ��������������?�������������������?
�������� � �� � � . The embedding space

�
is spanned by � 	� 6 � u 6 � u 6�� u 6 	 u 8� u 8�! u 8�" u 7�# u 7�$ u 7 ��% ��& and contains, simi-

lar to the example before, the angles
6 � ��� 	 , the Cartesian

position 58 , and, here, three further parameters: 7�# is the
difference � 6 	 � 6�� � � , 7�$ is the elevation angle of link-3
(relative to the horizontal), and 7 ��% is the angle between
distal link-4 and the vertical.

This allows to resolve the redundancy in various ways.
For example, the goal can be to ...

(i) take the minimal joint motion from the current posi-
tion to the specified position 58 : all we need to do is to start
the best-match search (�(' ��� ) 	 z ) at the best-match posi-
tion E#�* ; . . belonging to the current position, and the steep-
est gradient descent procedure will solve the problem;

(ii) keep joint +.� /�, u ; u.- 0 fixed: additionally specify

6 m and � m � � ;
(iii) use similar adduction in the two distal joints (like

the finger kinematics): by activating � # � � (to a small
value e.g., 0.01) and setting � $ 	 � . Measuring the de-
viation for the inverse kinematics we find a mean value of
0.008 in the workspace; Fig. 8(left) depicts the solution for
tracing a elliptical path for the end effector;

(iv) keep the middle segment horizontal: by specifying
the target � $ 	 � and �($ 	 � � � z . Fig. 8(middle) reveals
that this constraint can not be met in all cases. By setting� $ to only a small value, as a “soft goal”, the accuracy of
the trajectory is not (significantly) compromised (see also
below);

(v) approach vertically: after specifying � ��% 	 � ,� ��% 	 � � � z , Fig. 8(right) shows the stroboscopic tracking
result.

For these different cases we do not need different net-
works, instead one single PSOM can be utilized. If one an-
ticipates useful target functions, the embedding space can
be augmented in advance, enabling to construct reconfig-
urable optimization modules. They are later activated on
demand and show the desired performance. In conflicting
situation, e.g. the distal reaching positions in the last ex-
ample, a meaningful compromise is found. As shown in
[7], the input selection coefficients can be made dynam-
ical �  	 �  ���<� during the iteration process. I.e., sec-
ondary goal functions are weighted by �! ���<� , starting at
a small value, which decrease to zero. Primary positioning
goals are not compromised and secondary goals satisfied
as much as possible. This procedure allows to define prior-
ities of goal functions, which are solved according to there
rank.



5 Discussion and Conclusion

We presented the PSOM as a versatile module for learning
continuous, high-dimensional mappings. As highlighted
by the robot finger example, the PSOM draws its good gen-
eralization capabilities from curvature information avail-
able through the topological order of only a few reference
vectors /�� � 0 . This topological assignment can be learned
by (i) Kohonen’s SOM learning rule, or (ii) by construc-
tion – if the topological relation of the data is known. The
first is an iterative learning method which requires more
training data than the second. We find that in many robotic
applications, the latter case can be realized by active, struc-
tured sampling of the training data – often without any ex-
tra cost. This can be viewed as a special mechanism for
incorporating prior knowledge into the learning system.
In the robot finger example a set of only 27 data points
turns out sufficient to approximate the highly non-linear
3 D kinematics relation with remarkable precision. The in-
verse kinematics showed a mean positioning deviation of
only 1 % of the entire workspace range.

Due to the compactness of the training set, the PSOM
has some overlap with fuzzy networks (e.g. [10]): An ex-
pert defines a fuzzy class, assigns linguistic names (e.g.
“left”, “middle”, “right stroke position”), and (initially)
provides suitable output values. In the PSOM learning pro-
cess, the grid node values � can be assigned to input-output
pairs. Likewise, names can be alloted to support the inter-
pretation of the learned knowledge.

The PSOM’s associative mapping concept has vari-
ous attractive properties. Several coordinate spaces can
be maintained and learned simultaneously, as shown in
the robot finger example. E.g., the multi-way mapping
capability can solve the forward and inverse kinematics
within the very same network. This simplifies learning
and avoids worries about inconsistencies of separate learn-
ing modules. As pointed out by Kawato [1], the learning
of bi-directional mappings is not only useful for the plan-
ning phase (action simulation), but also for bi-directional
sensor–motor integrated control.

Another potential PSOM application is the representa-
tion of system states together with a set of values from dif-
ferent sensors. Here, the PSOM can serve as an integrated
sensor data fusion mechanism. It allows not only to incre-
mentally fuse available data, but also to deliver intermedi-
ate data predictions, usable for sensor guidance. For details
we must refer to [7] where also examples of the full 6 DOF
robot kinematics can be found together with responses to
sudden changes in underlying mapping task. See [9] for
several applications in visuo-motor coordination.

The input selection mechanism enables to easily add
further, parameterized target functions. Those can be uti-
lized to resolve redundancy problems when tasks are un-

derspecified. Here the PSOM offers to build a battery of
optimizer modules which can be learned within the same
continuous associative memory. On demand, one can se-
lect or combine auxiliary goals by activating the compo-
nents in the distance metric (� � in Eq. 3). The continuous
associative completion serves here as an elegant and com-
pact mechanism to provide a variety of options and solu-
tions.
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