
Proc. Int. Conf. on Robotics and Automation (ICRA) IEEE 1997 (in-press)

SORMA: Interoperating Distributed Robotics Hardware

Jörg A. Walter

Department of Computer Science � University of Bielefeld � D-33615 Bielefeld
Email: walter@techfak.uni-bielefeld.de � http://www.techfak.uni-bielefeld.de/ � walter/

Abstract: This paper introduces the Ser-
vice Object Request Management Architecture
(“SORMA”), its design issues, and its concepts.
It is a software framework for rapid development
of object-oriented software modules and their in-
tegration into stand-alone and distributed applica-
tions. SORMA provides an intelligent “object-bus”
for inter-operating and sharing distributed comput-
ing and robotics hardware.

We investigate the question, why too many valuable
hardware and software systems and components are
a “one-of-a-kind” product which do not find eco-
nomical re-use. For instance, due to the short life-
time of single-usage code, extensive, robust, and
verbose exception handling – a prerequisite of incre-
mental work – is often sacrificed . We analyze the
“costs of communication” between the component's
builder and all its users, who build solutions.

We propose to pay much more attention to interac-
tive exploration frameworks, which support rapid,
qualified information gain on context-situated, ef-
ficient applicability. SORMA demonstrates how
to reach self-explaining, built-in interactivity which
does not impair the component's real-time effi-
ciency.

Keywords: Service Object Request Management Archi-
tecture; shared, distributed resources; economy of reusing
components; communication cost; built-in interactivity;
time-optimal and protected invocation.

1 Introduction

The experience of building and operating robot-
vision labs [5, 10, 12] shows, that a substantial
amount of effort easily dissipates in adaption of soft-
ware components to application specific needs. A
lot of interesting ideas and application code is devel-
oped, but too often those remain as “one-of-a-kind”
pieces. Descriptions like short life-time, little use
and re-use, little contribution to later projects and
other peoples similar problems, are not exceptional
for (too) many valuable, fine components.

Why are many software as well as expensive hard-
ware components not better re-used and not better
shared among working teams? We emphasis the
term “communication cost” as a very useful view
point and discuss in the Sec. 2 the economy of re-
use. We are not going to speculate about monetary
figures on the over-all economic potential of mak-
ing components better re-usable (they are large) –
instead we investigate this question starting with the
component, its users and its maker.

In Sec. 3 we discuss ingredients for a software
framework, which forms a suitable, standardized
form for developing more sustainable components,
which achieve easier re-usability, and give the basis
for incremental work. Sec. 4 presents some essen-
tial ideas of “SORMA”. Sec. 5 reports on the experi-
ences we made with this software framework within
the context of a university robotics laboratory.

2 Economy of Reusing and
Sharing Software and Hard-
ware Components

The economics of reusable components are domi-
nated by the cost of communication between com-
ponent builder (“abstractor”, e.g. the programmer
of a software library) and the solution builders, who
integrates several components into new applications
(also called the “elaborators”) [2].

Reducing Communication Costs. A prerequisite
for a successful reuse and integration is to commu-
nicate the intented purpose of the component, which
problem it solves, when and how it is applicable.
Here, to communicate means, to make known how to
apply the component correctly and efficiently (Web-
ster). The sender is the maker, the “abstractor”, the
receivers are the countable number � of users, the
“elaborators”.,

How can we reduce the time necessary to under-
stand how to reuse a component? If the overall time
it takes all � elaborators to figure out the reusable
component - is an significant issue, this question

must be seriously considered.

The Usual Communication Mechanisms are tu-
torials, reference manuals, source code comments, –
and of course, verbal explanation and advice. Clear
structuring of documents is a classical requirement.
Very helpful are well organized on-line documenta-
tion systems with search capabilities on indexes and
full text. Electronic access is inexpensive (to use
and to update), concurrently available to many peo-
ple and places, and very rapid for searching.

The abstact communicated information is – to a cer-
tain extent – always prone to be out-of-date, wrong,
or incomplete (to a particularly larger extent if we
want/need to share already early, non-perfect ver-
sions). Furthermore, this communication involves
the process of encoding of a fact using natural
language, which often leaves space for more than
one unique interpretation (special programming lan-
guages exist for this reason).

In cases where these ambiguities become obvious,
one can clarify them, e.g. by asking an expert (if
available). Misinterpretations are the worst case.
Typically, they are very costly and can render huge
amounts of time and money useless.

Make Known by Exploration. The direct ex-
ploration of the object is a further mechanism of
communicating the component's intention, its con-
straints, and usage. This trial-and-error procedure
is a fundamental form of learning, it can be unsuper-
vised or guided by some teacher. Despite its effec-
tiveness, and probably due to its playful appearance,
exploration is usually not perceived as a serious and
canonical communication mechanism by its own.

The efficiency of exploration depends on the costs
and benefits of each trial and possible errors. This
has several constituents: Usually, primary test cost
factors are the time to set up a test program (or bet-
ter interactive test suite), the time to perform, and
to evaluate the tests (including all needed compile-
link-load-run loops; not to forget the recommended
clean-up of possible temporary hacks). The poten-
tial error costs depend on the system fault tolerance,
the time and effort to recover, and the real costs
(ranging from a graceful fault signal, an abort, an ir-
recoverable system error, to a robot going wild). The
benefit of an occured error is the information gained
from the system (learn value) and depends on how
informative the error messages are and how under-
standable the response is to the tester (e.g. “#0042”
versus what-why-where). Of course, the benefit of a
successful test is, beside the gained experience, the

verification of the tested component's properties.

This analysis emphasizes the extra value of eas-
ily available, rapidly operating, user- and reuser-
friendly experimentation frameworks. Asking the
component itself, to explore and also to clarify any
other ambiguity becomes than inexpensive.

3 Design Issues for a Software
Framework

In this section, we address several points, which ap-
pear valuable for reducing communications costs,
but not widely recognized in the field of robotics.

Pattern. For guiding software reuse some re-
searchers proposed the method of developing soft-
ware “patterns” . A pattern is a repeated conceptual
paradigm which shortens the communication such,
that it replaces learning by re-cognition when the
pattern is re-encountered. (A good pattern example
is the “Save” and the “Save-As” button, you might
find, when you are working with a new graphical
document editor. If you instantly perceive the proper
meaning of these buttons, you saved the time other-
wise required for studying the manual.) A success-
ful pattern allows more rapid understanding by stan-
dardization, better solution turn-around times, and
thus improves the component's economy.

Object-Oriented Programming (“OOP”) is an
important idea of gaining better re-use value for soft-
ware components (e.g. [3, 8]). An object is a piece
of code that owns private data and provides service
through methods (=procedures). It is a run-time in-
stance of a class which describes the behavior of
a set of alike objects. By the properties inheri-
tance and polymorphism OOP formalizes the idea
of a pattern. Furthermore, the concept of encapsu-
lation, providing only procedural access to private
resources, promotes easy re-usage. Since the imple-
mentation details are hidden behind the published
interface, unexpected interferences when integrating
components can be significantly reduced.

Context-Oriented Configuration. The abstractor,
in building a reusable piece, is solving a whole set
of future problems. For instance, most reusable soft-
ware results from the experience of being an elabo-
rator several times, then having a flash of insight that
solves a number of elaborators' problems once and
for all. But often there is an inherent solution con-
flict between the level of abstraction and generality

Vision Robot

Hand

Speaker

Transform

Inspector Player

Fig. 1: Puma robot manipulator with 3-fingered TUM hand in the Checkers player scenario.

versus the level of suitability for a particular prob-
lem context. One way to make a component more
powerful is to formulate the desired context and the
appropriate behavior in a set of configuration param-
eters. In order to keep the required communication
and learning effort low, methods for efficient and
simple usage are important. In cases of larger num-
bers of context parameters, the proper organization
of consistent sets is a significant burden and should
be solved in a systematic and convenient way. By
hiding information, the (re-)user can focus on the
essential parameters for his particular context.

Concurrent Team Development includes the
early sharing of components and is (in certain
phases) related with the problem of integrating
also pre-mature and rapidly changing code versions.
From our experience, three items are worth men-
tioning: (i) high-level Unix operating systems of-
fer superior (inherent not only attached) multi-user
and network capabilities (tcp/ip, nfs, amd, remote
login, X11, etc.). They provide the solid ground for
sharing distributed resources via standard networks.
Furthermore, numerous, high-quality, standard tools
are everywhere available (e.g. teams of size larger
than one might find aid with the “Concurrent Ver-
sion System”, CVS); (ii) strict OO encapsulation
and modularization simplifies ongoing and indepen-
dent component development; (iii) run-time encap-
sulation of application components using protected
invocation.

Protected invocation means, to invoke a compo-
nent (method call) by a mechanism, that a potential
failure does not affect the caller in an uncontrollable
way. For instance, memory allocation bugs can ex-
hibit very unpredictable effects.

Migrating Components. In order to allow early
integration of complex components, it is extremely
valuable to have the opportunity to quickly isolate
any application part by secure fire walls. Easy
component migration needs support for organizing
and re-organizing process and communication struc-
tures. Additionally, the program code must be able
to use the very same call syntax for local and remote

component communication.

Error Messaging Support when Objects Mi-
grate. When software components are used in both,
an local and a distributed fashion, the abstractor, the
elaborators, and the user need extra support. If it is
not available, the programmers get frustrated: what
to do with the message in case the call is local or
remote? Send to whom and how? Conventional so-
lutions, like sending messages to the standard error
channel are unreliable, since they might stay unseen
in some other terminal. Therefore, it is very desire-
able to use a unified and compact exception mes-
sage generation interfaces, delegating the appropri-
ate handling to the infrastructure.

Summary of Design Issues. We found following
points important:

� support for an easily available, rapidly operating
exploration framework for each component

– clear-text access to all configuration and all
usage options

– built-in interactivity to provide a life-long test
and exploration suite

– built-in documentation – synopsis and (help)
option menu

– detailed, understandable error messages

� sharing distributed resources

– interoperating computing as well as special
robotics resources

– maximize re-usability and portability across
all our available (Unix) operating systems

– efficient configuration support

– interactive command-line and graphical user-
interface tools (GUI)

– scripting capabilities (interpreter mode)

– real-time capabilities for all time-critical
parts, while keeping interactive support (!)

� improving robustness and fault tolerance by

SORM
SORM

SORM

SOR
Dispatcher

SO
Repository

SOR
string-struct
Converter

SO
Plant

SORM

CO
Plant

Client
Stub

CO
Repository

COMM

Process A

SO

SO

SO

SORM

SO

Process C
Process D

Process b

S O R M A

Fig. 2: Service Object Re-
quest Management Architecture
(SORMA) is a framework and
infrastructure to connect to dynam-
ically created Service Objects (SO)
via time-optimal intra-process and
protected inter-process communi-
cation. (Left:) Various software
components communicate in four
processes running on one or several
hosts. (Right:) Local and remote
requests to SOs are managed by the
SORM and COMM.

– strong support on exception message transport
and handling (important for network trans-
parency)

– self-managed process communication mecha-
nisms with resume capabilities, also for com-
plex state machines (e.g. robot manipulators)

Usually, these design goals are considered conflict-
ing. The next section introduces the Service Object
Request Management Architecture (“SORMA”),
and describes some of the concepts which contribute
to solve the above stated goals. For a more detailed
account see [11].

4 SORMA Concepts

Central to SORMA is the notion of a “service”,
which offers a certain functionality, e.g. abstract
computing, providing low- or high-level access to
hardware devices including sensors and actuators.
A service is realized in form of a Service Object
(“SO”), an instance in the OOP sense (see Sec. 3).
Each SORMA process has a Service Object Re-
quest Manager (“SORM”), which is responsible for
(i) dynamic constructing (building), (ii) maintain-
ing, and (iii) sharing of SO. This has to be managed
in a time and memory efficient manner.

Fig. 2 illustrates several properties: SORMA facili-
tates easy SO-requests between several SO – within
a single process, as well as across process and ma-
chine boundaries. A SO can be shared employing
a RPC-TCP Internet Protocol. Then requests from
distributed callers are served by a “daemon” in an
hierarchical client–server model. Remote requests
are handled by the optional COMM, the “Communi-
cation Object Management Module” using a proxy-
SO, as explained below. A SORMA process may
provide itself several service “classes”, each en-

abling to instantiate one or more SOs, which we also
call service flavors, see below.

The next paragraphs describe the SO interface, the
local and remote instantiation, and available interac-
tive tools SCOTT (Service COmmunicaTion Tools).
But first, let us advertise one immediate advantage
of complying to the SORMA interface idea.

SO Interface Incentives. SORMA supports the
reuse of written and compiled code in four main
process configurations depicted in Fig. 3. The only
prerequisite is, that the software interface follows
the idea of a SORMA service class. (i) a regu-
lar self-contained, stand-alone program with local
(fast intra-process) SO requests; (ii) by linking the
SORMA “server stub” a network daemon is cre-
ated, which can be interoperated by other SORMA
clients, including the standard inspector tool “scott”;
(iii) interactive local (and remote) SO requests are
conveniently facilitated in the line oriented inspec-
tor mode; (iv) The SORM-Tcl/Tk coupling allows
easy configuration of an application specific GUI
(Graphical User Interface) to communicate to local
(and remote) services.

Actually, by the help of the SCOTT standard tools
(see below), the functionally of type (iii) and (iv)
are already available when configuring the service
in one single (ii) deamon. A daemon might be
not sufficient, when tight real-time requirements oc-
cur. Then the protected invocation of a remote SO
might take to much time and the alternative, di-
rect code linking (type (i) Fig. 3) is advantageous.
The direct, intra-process invocation of a SO is time-
optimal to the extent that it costs about the extra
time of only one subroutine call. And, as already
indicated, SORMA offers the identical call syntax
for both invocation paradigms. This symmetry fea-
ture facilitates the flexible migration of service tasks
from and to other processes.

SO
class

SO
class

SO
class

SORM

main()
Program

Server
Stub

Daemon Inspector

Terminal

scottwish

GUI
Windows

main
Tcl/Tk

In
te

rn
et

SO
class

SORM SORM SORM

(iv) (ii) (iii) (i)

Fig. 3: SORMA instant re-use
scenarios. (i) a regular program
with fast intra-process SO requests;
(ii) a network daemon offers service
to other processes via the internet;
(iii) command-line access to all SO
methods and options; (iv) GUIs by
SORM-Tcl/Tk coupling.

SO Interface — a Compact Pattern. How can
SORMA combine the support level for real-time,
interactivity, and re-use? One clue is the interface
design of the service object. It is standardized and
small – which allows extended support for the ab-
stractor, the elaborator, as well as the final user.

SO — Methods: Beside the OO standard con-
structor (new) and destructure (free) methods, the
main procedural interfaces are subsumed in two ma-
jor methods: EXEC and CTRL . Compared to a de-
vice driver interface, the EXEC method does the
main job, like read () and write() for data exchange
to a disk drive. The method can be designed to op-
erate most rapidly – any special configuration when
initializing the object (here SO or device). For re-
configuring special properties (e.g. attributes, con-
ditional behaviors) there is another interface. The
CTRL method is conceptually comparable to the
ioctl () call, but it is not likewise cryptic. E.g. CTRL
is text-oriented and has a mandatory help and self-
explaining dump option.

Two methods allow two separate parser mechanisms
to optimize different design goals, usually mixtures
involving ease-of-use, comfort, information hiding,
fault-tolerance, parser effort, execution time, etc. A
very time-critical service will abandon an EXEC
parser and may instead specialize itself by dynamic
binding of the desired EXEC method (run-time
binding and re-binding upon CTRL calls).

SO — General Data Structure: All methods
share the same data structure for input and out-
put. Sending a non-empty message (method re-
quest or reply) to another process involves three
phases: the message gets packed in some standard
format, introduced into a transmission medium, fi-
nally, the packet gets received at the target and
unpacked. For three reasons SORMA employs
one single standard data structure for the message
transports: (i) standard packing/unpacking routines
(XDR) are static and pre-compiled (speed); (ii) it
simplifies text-conversion support (efficient transla-

tion mechanisms) to and from clear-text messages,
and (iii) it simplifies their usage – since it is a pat-
tern.

We found the following combination of data types
a good compromise: a float tuple (real, for continu-
ous values; a tuple is a vector or 1D array of dynamic
length) an integer tuple (e.g. flags, counters, discrete
signals), a text string (for human-machine commu-
nication; char* null-terminated) and a character tu-
ple (also “opaque” or “any”, for e.g. image data or
arbitrary complex data structures packed elsewise,
e.g. [4, NDR]). A result message makes use of an
additional return value, indicating success or a fault
id, and potentially a verbose human readable clear-
text debug message for notification, warnings and
errors. Receiver and sender id complete the trans-
port data structure.

We found the described data type choice lean – but
general enough to fit all our essential requirements.
Herewith intra-process communication is organized
as a time-optimal call-by-reference – while remote
method calls can employ standard and rapid packer
routines. Before the remote invocation mechanism,
the next section explains the local instantiation.

Service Flavors by Name. One key concept of
SORMA is the service object instantiation on the
basis of a unique name. The name consists of possi-
bly three parts, e.g. “foo.a@daemon”: (i) the class
name “foo”; (ii) the (optional) SO flavor specializa-
tion “foo.a”; (iii) the optional “@daemon” network
address, if it is present, it indicates a remote service
which is then resolved via the proxy mechanism to
the SO name “foo.a” – then local at the daemon side,
see below (for options on opaque network address-
ing see [11]).

At creation time, a local name (like “foo.a” with-
out “@” part) gets expanded into a list of CTRL ar-
guments – text tokens, which are interpreted by the
service's CTRL method (see Fig. 4). This provides
a general hook for arbitrary configuration and state
transition calls. Different names lead to the instan-

SO
Plant

SO
Repository
 dict => SO

foo.a => SO
...

foo => newfoo()
bar => newbar()
…

New
(newfoo)

Remove Sprint

CTRL EXEC

Service Class foo
Implementation

SO
foo.b

SO
foo.a

SO dict
 foo.a => …

foo.b => …
…

 1. first SOR to "foo.a"

2. name="foo.a" 3. foo.a

4.
 list of
para-

meters 7. new SO

5.

6.

Fig. 4: The local service ob-
ject instantiation and specializa-
tion procedure when the SORM
is called for the name “

������� �
”

the first time. The registered
class “

�����
” constructor function

gets invoked “newFoo("foo.a")”,
which retrieves the “recipe” from
a dictionary service. The “recipe”
is a token list, denoting a sequence
of state transitions. It gets parsed
by the object's CTRL method and
specializes the desired service ob-
ject flavor.

tiation of different service objects according to their
“recipe”. Since the resulting SOs belong to the same
service class but exhibit modified characteristics (at-
tributes, configuration, properties etc.), we call them
also “service flavors”.

The flavor name concept solves the conflict between
the three (before) opposed goals of: (i) serving
hardware by shared server access, (ii) which is
easy-configurable, (iii) but still state-free (as far
as possible). Because the script is associated with
the service object name, the COMM can efficiently
manage the requested connections. The SO names,
which are part of all initial SO reference calls, are
not only sufficient to build, but also - in case of
failing daemon - to re-establish the connections to
the appropriate service flavors, served by a restarted
SORMA daemon.

Beyond this robustness advantage, the name-to-
script scheme is a versatile configuration and de-
fault mechanism. SORMA offers a central dictio-
nary facility for expanding SO names. It offers vari-
ous options – the most straight forward loads entries
from a plain text file (lines plus commenting notes).
Of course, also this service is implemented as SO,
which has the immediate advantage, that dictionar-
ies in daemons can be remotely edited – during run-
time.

Proxy SO. Fig. 5 illustrates how the connection to
a remote service SO is created. The first request in-
volves the dynamic construction and caching of the
remote target SO (12), a proxy SO (3), and a Con-
nection Object (“CO”,6). The upper scheme dis-
plays several steps: Since the client SORM fails to
retrieve the requested SO in the SO-repository (1),
the SO-plant (2) instantiates (3) a new proxy SO.
The necessary daemon communication is handled
by the Connection Object, CO (6), which is built
(5), if not already available (4). The SO request

SO
Repository

Caller
(Client)

SO
Plant

CO
Plant

Client
Stub

CO
Repository

SORM

Server
Stub

SO
Repository

(Daemon)

SOR
Dispatcher

SORM

SO
Plant

1

2

3

4

5

6

7

8

9 10

11

12

In
te

rn
et

SO
Proxy

Caller

Client
Stub

SORM

Server
Stub SO

SO
Repository

SOR
Dispatcher

SORM

CO

(Client) (Daemon)

In
te

rn
et

Fig. 5: Creation and later usage of a remote Service
Object within the daemon process (rigth side) by a local
Proxy SO at the caller side, see text.

reaches the daemon SORM on the right side via TCP
Internet protocol and stubs 7 and 8. There, a SO-
reference-by-name mechanism induces the instanti-
ation of the desired SO.

The lower half of Fig. 5 depicts how the cached ob-
jects accelerate all further calls. Requests to the re-
mote SO look identical to local SO-requests – since
they are local requests to the SO-proxy. The SO-
proxy acts as substitution of the remote SO and
completely mirrors its interface, including the in-
put, potential exception, and output messages. The
proxy does not mirror irrecoverable daemon fail-
ures, which facilitates protected invocation. In-
stead, its connection object and the COMM, the
Connection Object Management Module would sig-
nal the problem and try to semi-autonomously re-
connect to a newly started daemon.

Exception Message Support. To standardize ex-
ception message generation, SORMA has one uni-
versal, compact procedure, which knows about ver-
bose, warning, and error messages. The transport
back to the requester works likewise for local and
remote method calls – in a cumulative way – also
across process and machine boundaries. Human
readable clear-text messages, but also unique iden-
tification codes (for error handlers) supplemented
with context information (source code location) are
standard.

Text Conversion turned out to be a very important
ingredient for reducing communication costs with
SORMA. It provides easy-to-use, unrestricted inter-
active access to each SO interface. Separated by re-
served word tokens, the transport structure can be
string converted in a bi-directional way (excluding
the unspecified “any” tuple). By this verbatim trans-
lation, interactive exploration is quite more authen-
tic as usual, ready-made test or demonstration pro-
grams. Applicability and limits of a component can
be investigated in a very quick and efficient manner.
The results can be 1:1 transfered to program code –
always with the option to chose between protected
and time-optimal invocation. Here, SORMA com-
bines the advantages of interpreted interfaces (like
Mathematica, Maple) and the benefit of real-time ef-
ficiency achieved by its SO-interface.

Interactive Service COmmunicaTion Tools
(SCOTT). As mentioned before, two standard tool
executables are readily available to remotely access
all (possible) SO in the network. (i) A command
line oriented inspector “scott” offers test-suite fea-
tures like line completion, editing, and recent his-
tory matching. Furthermore, it invites to program
service requests by simple scripts. (ii) Any desired
SO method can be invoked via a mouse-click on a
button, or a slider etc. The “scottwish” is a SORMA
enhanced Tcl/Tk shell and facilitates graphical user
interfaces (GUI), simply by writing short scripts, see
Fig. 6.

5 Experiences with SORMA

The first implementation example was a checkers
player system, developed with a team of students.
Due to the limited space, we must refer any details
to the description in [11]. In this hybrid applica-
tion the distributed object infrastructure was in the
foreground. Complying to the international rule of

Fig. 6: Example of a graphical user interface (GUI, by
R. Rae), produced by the “scottwish” and a Tk script. The
active stereo camera head can be interoperated by mouse
clicks and drags

checkers, a robot manipulator (PUMA), equipped
with a hydraulic dextrous hand (TUM) and sup-
ported by an image processing system, is empow-
ered to play this board game against a human player.
The task was split in several service components
grouped to six main processes running on two (or
3, 4) Unix workstations (see Fig. 1). The GUI en-
hanced symbolic player process interoperates all
other hardware components by SO requests, which
themselves call other daemons for service (e.g. the
token transfer SO carry involves the robot, hand,
vision etc.). During operation all daemons can be
interactively inspected.

Here the real-time demands were soft (best effort) –
and the achieved SORMA interprocess communica-
tion times are more than sufficient to meet the de-
sired inter-activeness, including speech generation
(between 1.5 and 4.0 ��������� s mean time for request
plus reply communication with a daemon; across
our computer park).

The real-time capabilities were demonstrated in a
3 D robot tracking application, combining vision
and force senses and a rapid learning PSOM net-
work [11]. This hard real-time task required strict
deadlines with zero time fault tolerance. Thanks
to the RCCL/RCI package we conveniently achieve
synchronous robot control employing a standard
SUN SparcStation [6, 10]. One standard SORMA
client-server CO asynchronously connected the vi-
sion analysis and the robot host. All other communi-
cation used the SORMA time-optimal intraprocess
invocation (about � �	������
 s elapsed call overhead
time) and further interprocess communications ser-
vices via shared memory (about � �������� s).

In contrast to other robot control software frame-
works like Chimera [9] or Psyche [7], SORMA does

not attempt to be a real-time operating system (OS)
itself (e.g. no scheduler). Chimera and Smart [1]
focus on multi-processor VME-bus systems which
are hosted by a Unix workstation. SORMA offers
to interoperate also software components served by
high-performance workstations across the network -
using the standard interface.

Currently we care about full portability and inter-
operability across the following operating systems:
Aix, Iris4d, Irix5, Irix6, NextStep, OSF1, Linux, So-
laris, and SunOS (which gives also the reason to still
hesitate about relying on P-threads implementations,
which are yet not available on all platforms above).

The central interest is to provide a framework for ef-
fective building of components and rapid assembly
to distributed solutions. It is interesting to note, that
despite the fact that SORMA was independently de-
veloped, it shares many ideas formulated in large in-
dustrial initiatives to build intelligent distributed ob-
ject infrastructures, in particular CORBA by OMG
[8]. Actually, the “Common Object Request Broker
Architecture” recently inspired the revised terminol-
ogy within SORMA. Instead of CORBA's goal of
serving many vendors' interests with multiple pro-
tocols, we are working with complex robotics hard-
ware, requiring specially adapted solutions. Here
SORMA emphasizes in particular interactive, built-
in exploration and usage support, robustness, and
real-time efficiency.

Furthermore, SORMA supports early resource shar-
ing and re-use of components: providing better ser-
vices will invite to re-usage, which gives incentive
for better services – thus a positive feedback loop
can emerge. We believe, this helps to improve the
service's economy.

References

[1] Robert J. Anderson. SMART: A modular architec-
ture for robotics and teleoperation. In Proc. IEEE
Robotics and Automation, Georgia, volume 2, pages
416–421, 1993.

[2] Kent Beck. Patterns and software development –
adding value to reusable software. Dr. Dobb's Jour-
nal, February:18–21, 1994.

[3] G. Booch. Object-Oriented Design With Applica-
tions. Benjamin/Cummings, Redwood City, CA,
1991.

[4] Gernot Fink, Nils Jungclaus, Helge Ritter, and Ger-
hard Sagerer. A communication framework for het-
erogeneous distributed pattern analysis. In V. L.
Narasimhan, editor, International Conference on Al-

gorithms and Applications for Parallel Processing,
pages 881–890, Brisbane, Australia, 1995. IEEE.

[5] Enno Littmann, Andrea Meyering, Jörg Walter,
Thomas Wengerek, and Helge Ritter. Neural net-
works for robotics. In K. Schuster, editor, Applica-
tions of Neural Networks, pages 79–103. VCH Ver-
lag Weinheim, 1992.

[6] J. Lloyd and V. Hayward. Multi-RCCL user's guide.
Technical report, McGill Reseach Center for Intelli-
gent Maschines, McGill University, Montréal, April
1992.

[7] Brian Marsh, Chris Brown, Thomas LeBlanc,
Michael Scott, Tim Becker, Cesar Quiroz, Prakash
Das, and Jonas Karlsson. The rochester checkers
player: Multimodel parallel programming for ani-
mate vision. IEEE Computer, 2:12–19, Feb 1992.

[8] Robert Orfali, Dan Harkey, and Jeri Edwards. The
Essential Distributed Objects Survival Guide. John
Wiley & Sons, 1994.

[9] David B. Stewart, Donald E. Schmitz, and
Pradeep K. Khosla. The Chimera II real-time oper-
ating system for advanced sensor-based control ap-
plications. IEEE Trans. on System, Man, and Cyber-
netics, 22(6):1282–1295, 1992.

[10] Jörg Walter and Helge Ritter. The NI robotics labo-
ratory. Technical Report SFB360-TR-96-4, 1996.

[11] Jörg Walter and Helge Ritter. Service Object Re-
quest Management Architecture: SORMA concepts
and examples. Technical Report SFB360-TR-
96-3, Universität Bielefeld, D-33615 Bielefeld,
http://www.techfak.uni-bielefeld.de/ � walter/pub/,
1996.

[12] Jörg Walter and Klaus Schulten. Implementation
of self-organizing neural networks for visuo-motor
control of an industrial robot. IEEE Transactions in
Neural Networks, 4(1):86–95, 1993.

Acknowledgments:
The experience using and extending NST, the “Neural net-
work Simulation Tool” developed by Helge Ritter, had im-
portant influence in the time efficient design of the SO in-
terface. Many thanks to H. Ritter, C. Dücker, J. Jockusch,
N. Jungclaus, and G. Menkhaus for proofreading an ear-
lier version of this paper. The checker player aplication
came into play with the valuable contributions of C. D.,
H. Holzgraefe, R. Kaatz, M. Krause, D. Selle, B. Sieker
and P. Ziemeck. The tracker application was joint work
with C.D. and G. Heidemann. The depicted SORMA-GUI
for the active stereo camera head was designed by R. Rae.
This work was supported by the ministry for research and
education of NRW.

