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Abstract

We introduce a novel projection based visualization method for high-dimensional
datasets by combining concepts from MDS and the geometry of the hyperbolic
spaces. This approach Hyperbolic Multi- Dimensional Scaling (H-MDS) is a synthesis
of two important concepts for explorative data analysis and visualization:

(i) Multi-dimensional scaling uses proximity or pair distance data to generate a
low-dimensional, spatial presentation of the data. (%) Previous work on the “hy-
perbolic tree browser” demonstrated the extraordinary advantages for an interactive
display of graph-like data in the two-dimensional hyperbolic space (IH?).

In the new approach, H-MDS maps proximity data directly into the IH?. This re-
moves the restriction to “quasi-hierarchical”, graph-based data — a major limitation
of (ii). Since a suitable distance function can convert all kinds of data to proximity
(or distance-based) data this type of data can be considered the most general.

We review important properties of the hyperbolic space and in particular the
circular Poincaré model of the JH?. It enables effective human-computer interaction:
by mouse dragging the “focus”, the user can navigate in the data without loosing the
context. In JH? the “fish-eye” behavior originates not simply by a non-linear view
transformation but rather by extraordinary, non-Euclidean properties of the IH?.
Especially, the exponential growth of length and area of the underlying space makes
the IH? a prime target for mapping hierarchical and (now also) high-dimensional
data.

Several high-dimensional mapping examples including synthetic and real world
data are presented. Since high-dimensional data produce “ring” shaped displays, we
present methods to enhance the display by modulating the dissimilarity contrast.
This is demonstrated for an application for unstructured text: i.e., by using multiple
film critiques from news:rec.art.movies.reviews and www.imdb.com, each movie is
placed within the JH? — creating a “space of movies” for interactive exploration.

Key words: visualizing high-dimensional data, hyperbolic multi-dimensional
scaling, H-MDS, focus+context, semantic browsing, text mining.
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1 Introduction

For many tasks of exploratory data analysis visualization plays an important
role. It is a key for efficient integration of human expertise — not only to in-
clude his background knowledge, intuition and creativity, but also his powerful
pattern recognition and processing capabilities. The design goals for an opti-
mal user interaction strongly depend on the given visualization task but they
certainly include an easy and intuitive navigation with strong support for the
user’s orientation.

Since most of available data display devices are two-dimensional — paper and
screens — the following problem must be solved: finding a meaningful spa-
tial mapping of data onto the display area. One limiting factor is the “re-
stricted neighborhood” around a point in a Euclidean 2D surface. Hyperbolic
spaces open an interesting loophole. The extraordinary property of exponential
growth of neighborhood with increasing radius — around all points — enables

one to build novel displays.

The “hyperbolic tree viewer”, developed at Xerox Parc [7], demonstrates the
remarkable elegant interactive capabilities (visit http://www.inxight.com for
a Java demo). The hyperbolic model appears as a continuously graded, fo-
cus+context mapping to the display. Very quickly the navigation by mouse
clicks and drags appear natural and intuitive. It supports up to 10 times as
many nodes as conventional approaches while providing more effective navi-
gation around the tree-hierarchy.

The question how effective is visualization and navigation in the hyperbolic
space was studied by Pirolli et al. [12]. By conducting eye-tracker experiments
they found that the focus+context navigation can significantly accelerate the
“information foraging”. Risken et al. [14] compared traditional and hyperbolic
browsers and found significant improvement in task time for this novel display

type.

Unfortunately, previous usage of direct hyperbolic visualization was limited
to hierarchical, tree-like, or “quasi-graph” data. A IH? grid layout of data was
recently introduced by Helge Ritter by generalizing Kohonen’s Self-Organizing
Map algorithm (HSOM) to the hyperbolic space [15]. Jorg Ontrup applied this
HSOM successfully to text categorization and browsing [11].

In this work we go one step further and introduce the hyperbolic multi-dimensional
scaling (H-MDS) for a direct construction of a distance preserving embedding
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of high-dimensional data into the hyperbolic space. The resulting H-MDS com-
bines a number of attractive features of multi-dimensional scaling and hyper-
bolic spaces for an interactive display. Compared to the HSOM it is not based
on a discrete grid and can be used also in situations where only dissimilarity
data but not a vector representation is available.

In Sec.2 and 3 we introduce the hyperbolic space and the standard multi-
dimensional scaling. Sec.4 explains the combination of both concepts into
H-MDS. Even though the look and feel of an interactive visualization and
navigation is hardly compressible to paper format, we report several results
and snapshots of first experiments in Sec.5. The effect of rescaling the dis-
similarities is explored. In Sec.6 we apply the H-MDS for spanning a space
of unstructured text documents, i.e., special “averaged” film critiques. This
approach allows to navigate in the space of selected movies. Since this dataset
comprises many dimensions, the visual appearance as rings is discussed and
methods to modulate the dissimilarity contrast are presented.

2 The Hyperbolic Space IH?

2300 years ago, the Greek mathematician Euclid founded his geometry on
five axioms. The fifth, the “parallel axiom”, appeared unnecessary to many
of his colleagues. And they tried hard to prove it derivable — without suc-
cess. After almost 2000 years Lobachevsky (1793-1856), Bolyai (1802-1860),
and Gauss (1777-1855) negated the axiom and independently discovered the
non-FEuclidean geometry. There exist only two geometries with constant non-
zero curvature. Through our sight of common spherical surfaces (e.g. earth,
orange) we are familiar with the spherical geometry and its constant positive
curvature. Its counterpart with constant negative curvature is known as the
hyperbolic plane IH? (with analogous generalizations to higher dimensions)
[3,18]. Unfortunately, there is no “good” embedding of the IH? in IR®, which
makes it harder to grasp the unusual properties of the IH2. Local patches re-
semble the situation at a saddle point, where the neighborhood grows faster
than in flat space (see Fig.1). Standard textbooks on Riemannian geometry
(see, e.g.[8]) examine the relationship and expose that the circumference ¢
and area a of a circle of hyperbolic radius p are given by

area: a(p) = 4msinh*(p/2) (1)
circumference: ¢(p) =2wsinh(p) . (2)

This bears two remarkable asymptotic properties, (i) for small radius p the
space “looks flat” since a(p) ~ mp* and c(r) ~ 27p. (i) For larger p both
grow ezponentially with the radius. As observed in [7,6], this trait makes the



hyperbolic space ideal for embedding hierarchical structures. Fig. 1 illustrates
the spatial relations by embedding a small patch of the JH? in IR®.

Fig. 1. There is literally more room in hyperbolic space than in Euclidean space, as
shown in this illustrated embedding of the hyperbolic plane into 3D Euclidean space
(from [19], courtesy of Jeffrey Weeks). (Right:) Exponential growth (Eq. 1) of
the circumference ¢(r) and area a(r) is experienced if a “circle” with radius r is
drawn in the wrinkling structure. (Left:) The sum of angles in a triangle is
smaller than 180°. A IH? paper model of the JH? can be made by gluing many
equilateral triangles along their edges in such a way that seven triangles meet at
each vertex. Fig. 3 shows the Poincaré projection for eight meeting triangles.

To use the visualization potential of the JH* we must solve two problems: (i)
the data must be “accommodated” in the hyperbolic space (see Sec.4) and (i)
in order to inspect the result we need a projection of the JH? onto a suitable
display. For practical and technological reasons this is a “flat surface” (we will
not be able to buy a hyperbolic screen — at least for the foreseeable future).
Fortunately, the projection problem was solved more than a century ago.

2.1 Projections of the Hyperbolic Space IH*

It lays in the nature of a curved space to resist the perfect projection into
the flat Euclidean surface. Each attempt compromises one or more correct
representations of length, area, and angle (form) relations, as is well known
from the spherical geometry (e.g., the Mercator, Lambert, and stereographic



projection). Similarly to the spherical geometry several mappings were devel-
oped, four are especially well examined: (i) the Minkowski, (ii) the upper-half
plane, (iii) the Klein-Beltrami, and (iv) the Poincaré or disk mapping. See [3]
for more details and geometric mapping to convert in-between (i) (iv).

2.2 Properties of the Poincaré Projection

What are its properties and what makes the Poincaré projection for our pur-
pose the most suitable?

Display compatibility: The infinite large area of the JH? is mapped entirely
into a circle, the Poincaré disk PD. This infinity representation fascinated
M. Escher and inspired him to Fig. 2.

Circle rim “= o0” : All remote points are close to the rim, without touching
it.

Focus+Context: The focus can be moved to each location in ]H2, like a
“fovea”. The zooming factor is 0.5 in the center and falls (exponentially)
off with distance to the fovea. Therefore, the context appears very natural.
As more remote things are, the less spatial representation is assigned in the
current display.

Lines become circles: All JH*lines? appear as circle arc segments or (cen-
tered) straight lines in PD. There extensions cross the PD-rim always per-
pendicular on both ends? | see Fig. 3.

Conformal mapping: Angles (and therefore form) relations are preserved
in PD, area and length relations obviously not (in contrast, e.g., to the
Klein-Beltrami model which is length preserving).

Parallel axiom can be demonstrated. While the Euclidean space accommo-
dates exactly one parallel? to a line through a given point (not laying on
this line), the JH? offers infinitely many. In PD a line is an arc who's ends
are perpendicular to the circle rim. It is easy to draw many non-crossing
circles through any given isolated point (see Fig. 3).

Exponential large space: There exist two kinds of “parallels”: (i) asymp-
totic parallels, circles which touch at the rim in the same “co-point”, and
(i) ultra parallels, circle arcs which do not intersect within PD. One can
anticipate, there is much more space in oo than “usual” — sometimes the
IH? is also called “more intensive infinite” than the IR%. This extra space is
desired for finding good accommodation for our data.

2 A line is by definition the shortest path between two points

3 Sometimes straight lines through the center point are referred to as generalized
circle and considered as a circle arc with infinite radius.

4 A parallel in a two dimensional manifold is a line which does not intersect.
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Fig. 2. Woodcut by Maurits Escher, named “Circle Limit III” (1958). After seeing
Coxeter’s picture [3] of the Poincaré projection of the IH?, the artist was fascinated
by the infinite space covered precisely in the disk. Note the “fish-eye” effect, seen at
the fishes: all have about equal size in IH? — but they appear larger in the center.

2.8 All in one Picture: Usage of Isometric Transformations

For changing the focus point in PD we need a translation operation (which can
be associated to a mouse click or drag event). In general, the transformations
which do not change form and metric in JH? are, similar to IR* the translations,
rotations, and the reflection. How do these operations look in the Poincaré PD?
Because all JH% lines remain JH*lines, their corresponding PD circle arcs must
remain (generalized) circle arcs in PD.

The transformations that respect these properties (also called “circle auto-
morphy” transformations) are here the Mdbius transformations 7'(z) which
can be formulated using complex numbers 2, a,b: T,;(z) = (az + b)/(bz + a)
with |a|? — [b]* = 1. By describing the Poincaré disk PD as the complex unit
circle, the isometric transformations for a point z € PD can be rewritten in
the more comprehensible form:

0z +c

I:T : 0:7
: (23 . 0) chz+1’

6] =1, || < 1. (3)

Here the complex number 6 describes the pure rotation of PD around the
origin 0. The following translation by ¢ maps the origin to ¢ and (without
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Fig. 3. (Left:) A perfectly symmetrical triangular JH? grid displayed in the Poincaré
disk PD. While in flat R? a perfect triangle tessellation is build on the hexagon
(6-gon) — in IH?, tessellation with regular n-gons and n > 7 are possible. Here the
8-gon is the base structure: at each node eight equilateral triangles meet (compare
Escher’s woodcut Fig.2). The edges line up straight, such that infinite long IH?
mesh lines are constructed, which appear as (generalizes) circles in PD.  (Right:)
The effect of an isometric translation on the entire grid. Note, how all generalizes
circles are transformed into other circles.

rotation # = 1) —c becomes the new center 0. The inverse transformation is

T Yz ¢,0) =T(z; —0c,0) . (4)

Two successive transformations in PD are computed faster by evaluating the
concatenated transformation (see also [6]):

T(T(z c1,6h); c2,02) =T(z, ¢,0), with
9201 + C2 9102 + 915102

c=-——— and /= —
926162 +1 926102 +1

2.4 Does the H* work like a crystal ball?

Some people explain the working principle of the IH? Poincaré mapping as a
glass ball — a crystal ball, which can be rolled on a infinite (flat) plane. How
far is this comparison meaningful?

On the positive side it can be helpful for introducing the graphical user ma-
chine interface, since many IH2-beginners have experience with manipulating
3D scenes with a mouse. One common interaction mode is the coupling of
the pitch and yaw angles of the 3D world coordinate transformation with the
mouse. The concept of a turnable globe is realized and by click+drag on this



virtual ball, the visible scene can be turned and rolled, which appears very
soon natural and intuitive.

This interaction concept transfers to the JH? since one of the most useful inter-
action modes is similar: clicking on a point ¢ in PD and dragging ¢ to another
location within PD. The rest of the scene follows the non-linear Mobius trans-
formation Eq. 3. In praxis this exposes the major advantages of the IH?: the
amount of space grows exponentially with the distance. This is apparent for
the center but is a ubiquitous property. By means of the Md&bius transforma-
tion this can be easily perceived. The unusual spatial growth of neighborhood
includes also more angular space. As seen in Fig. 3, this allows a regular tri-
angular tessellation of the JH* with more than six connecting triangles. An
instructive demonstration is given in the next section.

2.5 Tree Data Accommodation and Angular Growth

Now we turn to the question raised earlier: how to accommodate data in the
hyperbolic space. A solution to this question for the case of acyclic, tree-like
graph data was provided by Lamping and Rao [7,6]. By using mainly successive
applications of transformation Eq. 3 they developed (and patented) a method
to find a suitable layout for this data type in IH>. Each tree node receives
a certain open space pie segment, where the node chooses the locations of
its siblings. For all its siblings ¢ it calls recursively the layout-routine after
applying the Mdébius transformation Eq. 3 in order to center i.

Fig. 4 illustrates three intermediate steps and illustrates the extraordinary
behavior of angular enlargement in the JH2. Consider the situation in the flat
land: here the recursive sector partitioning divides the space in more and more
acute sectors (a~ 360° divided by number of leaves). Note the crucial difference
to the crystal ball on the flat plane: the rolling does work, but the layout of
data is limited (you would have to roll further and further).

It should be pointed out, that these ideas principally work also in higher di-
mensions of the hyperbolic space. E.g., Munzner developed an other graph lay-
out algorithm for the three-dimensional hyperbolic space [9]. Her “H3Viewer”
[10] allows fast drawing and frame rate interaction and can arranges trees in
beautiful flower-like structures. The extra dimension opens even more space
for the data layout. Unfortunately, this advantage comes with the problem of
occlusions on every standard 2D display device.



Fig. 4. (a—c) The IH? tree layout for tree-like graphs demonstrates the unusual sector
area enlargement with growing neighborhood in JH?.  The dotted lines indicate
the recursive construction by sector delimited by the rays (straight in JH?, circles in
PD). (a) The marked 90° pie is allocated by the root node “0” to the child node
“1” (one of four).  (b) By radial translation node “1” centers itself and distributes
1ts sector among its children. Note, how the sector angle has opened up to about
180°.  (¢) Two nodes deeper, for node “11” the original 90° sector opened to more
than 270°. Since the Poincaré model is conform, the angle at node “0” is preserved
as indicated by the dotted angle markers.

3 Multidimensional Scaling (MDS)

First we review MDS and the Sammon algorithm.

Multidimensional scaling refers to a class of algorithms for finding a suit-
able representation of proximity relations of N objects by distances between
points in a low dimensional — usually Euclidean — space. For a detailed analy-
sis on proximity structures, see [1]. In the following we represent proximity as
dissimilarity values between pairs of objects, mathematically written as dis-
similarity 6;; € IR§ between the 7 and j item. As usual we assume symmetry,
i.e. §;5 = 0;;. Often the raw dissimilarity distribution is not suitable for the
low-dimensional embedding and an additional d-processing step is applied. We
model it here as a monotonic transformation D(.) of dissimilarities d;; into dis-
parities Dy; = D(d5). In Sec. 6.3 we will discuss a transformation of adjusting
a potential dimensionality mismatch.

The goal of the MDS algorithm is to find the spatial representation x; of each
objects i in the L-dimensional space, where the pair distances d;; = d(x;,x;)
match the disparities D;; as faithfully as possible V;.;D;; ~ dj;. Here, L is
typically two or three, since again the main purpose of MDS is visualization
and explorative data analysis. The pair distance is usually measured by the
Euclidian distance:

dij = ||xi — x|  with x; € RY, i,j€{1,2,.N} (5)



3.1 Sammon’s Algorithm

One of the most widely known MDS algorithms was introduced by Sammon
[17] in 1969. He formulates a minimization problem of a cost function which
sums over the squares of disparities—distance misfits, here written as

BE({x:}) =Y > wij(dij — Dy)*. (6)

i=1 j>i

The factors w;; are introduced to weight the disparities individually and also

to normalize the cost function £ to be independent to the absolute scale of the

disparities Dj;. Depending on the given analysis task the factors can be chosen
) _

to weight all the disparities equally — the global variant (w;;” = const) — or

to emphasize the local structure by reducing the influence of larger disparities
(wiy)
(9) 1 m_ _ 2

1
w___ L o0-_2 1 (7)
N >\ T A (D

w

Note that the latter is undefined if any pair has zero disparity. In his original
work [17] Sammon suggested an intermediate normalization
(m) 1 1

w = - - 8
" Zszl Zl>k Dkl Dij ( )

which we are using in the following. Sammon proposed a steepest gradient
method, in particular, the (diagonal) Newton method to iteratively minimize
the remaining cost or stress E. He ignored the off-diagonal part of the Hes-
sian matrix and used a step length reduced by a “magic” factor n of 0.3-0.4.
Starting from a random {x;} initialization, in each iteration step, one object
1™ is considered, and Eq. 6 minimized with respect to x;-

x4 = x4 A, (9)

with A;« here written per component ¢ € {1,.., L}

0*E

2
0. 4

_ 9B
6$i*,q

Ai*,l] — . (10)

The algorithm usually needs several epochs (with random sequence of selected
i*) to converge to an cost-function minimum. The usual methods to deal with
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the risk of converging to a local minimum are restarting with different initial
conditions and selecting the result with the lowest cost function or stress F.
To save CPU time one may want to start with a good initial configuration
{x;} for example by using the first L principal components found by PCA.

The reader is referred to [2] for further details on this and other MDS algo-
rithms.

4 Multidimensional Scaling in IH>

How can the data be accommodated in the hyperbolic plane — preserving
the distance structure of the given data? We seek the synthesis of the MDS-
approach and the visualization capabilities of the hyperbolic plane. The core
idea turn out to be very simple: instead of finding a MDS solution in the low-
dimensional Euclidean IR* and transferring it to the JH* (which can not work
well), the MDS formalism operates in the hyperbolic space from the beginning.
The key point is Eq. 5. The Euclidean distance in the target space is replaced
by the appropriate distance metric for the Poincaré model (see, e.g. [8])

x; — %

dz'j = 2 arctanh ( ) , X, X5 € PD. (11)

|1 —Xif{j|

Several aspects need consideration:

The PD disk is the entire IH?. Therefore, care must be taken to stay within
the unit circle when updating the point :*. But a simple clipping or shrinkage
of the update step nA;« in Eq. 9 is not appropriate. Instead the M&bius trans-
formation Eq. 3 leads in the right direction and handles the rapid shrinkage in
the vicinity of the circle rim.

X = (D A, 1); (12)

¥ ¥

While the gradients 0d;; ,/0x;, required in Eq. 10, are rather simple to com-
pute for the Euclidean case (= (24— 2;j,)/di;), the case becomes complex for
Eq. 11:

0 2t U1 Ti1U3 + X204

d i ) — _ Js Js 13
oy =T (v%—l—v% v+ ] (13)
0 2t () Ti1Ug4 — T520U3
——d(xi,x;) = ’ 2 14
D1 (i %)) = 75 (v%+v§+ 02 + 02 (14)

with
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X; = (1'1'71 + iill'iyz) e PDcC
Xj: (-'L'j,l +il‘j’2) € PD C (C
V1 =T;1 — 51

V3 =TT + TipTi0 — 1

Vo =Ti2 — Tj2
Vg =T 10352 — L4142
B vf + v%

2
"= 2 2
U3+U4

(15)

This bears two critical cases:

e the denominator vf +v3 becomes zero only if the points x; and x; are equal;
e vi + v} = 0 does not occur for valid points inside the unit circle.

Due to the complexity of these results we choose to drop the computation of
the second derivatives and rather improve the cost minimization step Eq. 10.
We employed the Levenberg-Marquardt approach and followed the argumen-
tation in [13] by dropping the higher derivatives. The implementation uses for
each data point 7 an individual and bounded parameter \ € [10~*, 10%].

4.1 Disparity preprocessing

Due to the non-linearity of Eq. 11 the preprocessing function D(.) (see Sec. 3.1)
has more influence in IH?. Consider, e.g., linear rescaling of the dissimilarities

Dij = D(éu) = Oééij a > 0. (16)

In the Euclidean case the visual structure is not affected — only magnified by
the factor .. In contrast in JH?, « scales the amount of curvature that is felt
by the data. In the PD this has the effect that the increasing « shifts all points
further outside — but there is also much more (exponentially more) space. The
optimal a depends on the given dataset, its dissimilarity structure, and last
not least — on the given visualization task.

In the experiments reported below, we report on the effect of tuning «. For
high-dimensional datasets we discuss in Sec. 6.3 also nonlinear transformations
in order to enhance the disparity contrast in the visual display of a dataset.

5 Introductory Experiments

We conducted experiments and present several real and synthetic datasets.
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of (b)

Fig. 5. (a-d) Iris dataset: the three iris classes are clustered and well separated in
PD as indicated by their markers. (a) uses a smaller « for dissimilarity rescaling
than (b). While (a) looks comparable to a common Sammon map in IR?, in (b-d)
the wider, exponentially growing space in IH? is used and can be explored by moving
the focus point (via mouse drag) to the areas of interest. The arrows indicate the
original focus location in (b).

5.1 Iris Dataset

Fig.5(a-d) displays the obligatory “Hello World” example of data mining —
Fisher’s Iris data set. It describes 150 flower samples of three types: iris setosa
(“A”), iris versicolour (“x”), and iris virginica (“+7). 0 is here the Euclidean
pair distance in the four describing components sepal length, sepal width, petal
length, and petal width. The clear separation of the class demonstrates that
MDS performs also well in the hyperbolic plane. Several navigation snapshots
visualize the focus+ context effect with three navigation snapshots for two
different o values.
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5.2  Animals Dataset

Fig.6 presents the second dataset and demonstrates the preservation of se-
mantic proximity. The dissimilarity measure is the euclidean distance in the
13 features (see caption and UCI Machine Learning Repository). Herewith,
the more properties are shared by a pair of animals, the closer they should
settle. The semantic relationship appears very clearly in the H-MDS display.

Fig. 7 displays the rest stress E(«) depending on the scaling factor v in Eq. 16.

dog fox
wolf
cat
. [
lion Iiger eagle
hawk ,"
horse ow’
zebra /
CcOowW hen
900k

Fig. 7. The remaining stress Ej 2 for E
dis- 0.003
similarity scaling o: The minimum of  0.002
Epz = 0.00089 at o = 3.7 is less than ~ 0.001
a fifth of the rest stress for the flat em- 0 B

the animals dataset versus the

bedding F 2 = 0.0048.

Fig. 6. The animals dataset describes 16
animals by 13 biological, binary coded fea-
tures (small, medium, big, 2 legs, 4 legs,
hair, hooves, mane, feathers, hunter, run-
ner, can fly, and swimmer). Two pairs
have equal features and are mapped on
the same spots: owl+hawk at 4 o’clock
and horse+zebra at 8 o’clock.

0.008 SR A AL R
0.007 E stress(alpha)

0.006
0.005 F
0.004 £

5.8 Random Tree in 200 Dimensions

Fig. 8 shows a hierarchical cluster dataset with 280 points. It comprises the
nodes of a three-level “random tree” reaching out in the IR*™. The directions
of the branches were chosen randomly, while the branching factors were 5-5-10

and the link lengths were 2-1.5-0.5.
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408 102,107

Fig. 8. The three-level “random tree” in the IR?°C MDS projected in the JH?. Dis-
played are snapshots of navigation through the mapping, with labeling turned on
and off (systematically labeled by three digits according to the branch numbers).

For identification the nodes can be optionally labeled. By using the IH? fo-
cus+context navigation one can interactively inspect the details where the
labels were overlapping in the initial focus position. Fig. 8 display two snap-
shots of this process. However, this can only give a glimpse of the dynamic
look and feel of the life interaction.

How advantageous is the hyperbolic embedding compared to the euclidean
embedding? To answer this question we examine the stress E({x;}) (Eq.6)
depending on the scaling factor « (Eq. 16). With growing « the data experi-
ences more and more negative curved space. In Fig.9 (top-left) we find rest
stress ' has a minimum Eyp»i, = 0.0095 at o = 2.9 which compares to
a classical Sammon mapping in JR* with a more than five times higher rest
stress Epapmip = 0.057.

For the optimal a-point, Fig.9 (right) displays also the relation between the
resulting pair distances versus the scaled disparities as scatterplot (D;;,d;;).
A least square regression line is fitted and returns a Pearson’s correlation
coefficient of Ry> = 0.901. This compares favorably to Rgz: = 0.702 for the
Sammon algorithm in R?. The bottom-left curve displays the developement
of the correlation coefficient R(«) with growing dissimilarity scaling «. This
demonstrates that the dataset can profit from the non-euclidean geometric
embedding.

How does this compare to conventional visualizations? Fig. 8a shows the same
dataset (left) as random projection and Fig.8b as principal axis projection.
While the cluster structure appears clearly in the IH? mapping Fig. 8, this is
not the case, neither for a random projection, nor for the PCA-projection in
direction of the two strongest eigenvectors Fig. 10.
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Fig. 9. (a, top-left) The rest stress Ey» versus the dissimilarity scaling o shows
a minimum at o = 2.9. (b right:) Scatterplot of the pair distances d;; in IH?
versus the « scaled dissimilarities D;;. The plot has a good linear regression fit with
the correlation coefficient R = 0.901 for o = 2.9 (¢ bottom-left) The correlation
coefficient R(«) has an F(a)-corresponding maximum.
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Fig. 10. (a left:) Random projection of the “random tree” in the IR?%, (b

right:) PCA-projection to plane spanned by the two largest eigenvectors. The pre-
cise cluster structure remains hidden. Note, a prerequisite of both displays is that
the data is available as vector in IRM — this is not the case for the MDS.

5.4  Random Distributions in High-Dimensions

Feature-rich datasets are inherently high-dimensional. With growing dimen-
sionality most of their volume is contained in a thin, outer shell. This well
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know characteristics has consequences for the proximities distribution of high-
dimensional datasets in general. Using Monte-Carlo simulations we examined
several random M-dimensional point distributions with (i) M i.i.d. Gauss ran-
dom variables for each component, (i) uniform distribution inside the unit
sphere, (iii) on its surface, (iv) inside the M-dimensional unit hypercube
and (v) on its corners.

Gauss - Distance - Histogramm
6000

5000 Fig. 11. Histogram of
euclidean distances ¢
between pairs from
a radial Gauss dis-
tribution in various
dimensions M €
{2,10, 100, 250, 1000}
P (124,750 pairs from
11 — 500 random points
20 25 30 35 40 45 50 with unit variance;

Distance binning width is 0.1).

4000
3000
2000
1000

o s N | <"’ | I‘\
0 5 10 15

[

Fig. 5.4 illustrates the first case as histogram of the pairwise distances. With
growing M, the distance distribution ¢ shifts to larger distances without sig-
nificant widening. For the other cases (7i-v) the principal structure is the same
except for some peak structures details for low dimensions (small M). This
suggest, the observation holds also for other cases and can be generalized to in-
herently high-dimensional data, i.e. not laying in a low-dimensional sub-space.

Consequences are, as noted by several other authors [4,5], that the optimal em-
bedding in low-L spaces tends to become a circular ring structure for growing
M-dimensionality. Unfortunately, the situation bears numerous local mini-
mal and the plain Sammon algorithm often returns sub-optimal results (some
available implementations exhibit serious numerical problems and return here
bizarre structures, e.g. the sompak-package).

How does the JH? accommodate such a dataset? Fig. 12 shows the two target
mappings for (left) IR* and (right) IH* together with their disparity-distance
scatterplots {Djj,d;} (o = 0.33). The remaining stress was 40% higher for
the Euclidean embedding with Ep: = 0.40 versus Ep2 = 0.285, which is
comprehensible also in the two (d;;, D;;) scatterplots in Fig. 12(c,d).

It turns out, that the IH? is not free of local minimal — but circumstances
are much better than in IR: obviously the cost function landscape offers more
space to circumvent local minima. And solutions can be found more easily in
the hyperbolic geometry.
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Fig. 12. (Top) Multi-dimensional scaling of 150 Gauss distributed points in M = 100
dimensions into the (a) IR? and (b) into the hyperbolic IH?. (Top:) The MDS
in Euclidian space (a) gets more easy locked in local minima than the MDS in
the hyperbolic space. The right side (b) shows the ring-like structure previously
reported to be more optimal for this high-dimensional mapping task. Probably the
extra space in JH? allows to circumvent around the local minima during the iterative
MDS process. (Bottom:) The two corresponding scatterplot exhibit the target
dissimilarities Dj; and the obtained distances d;;. The optimal distribution has little
rest stress and approximates the dashed diagonal line. (d) In IH? the majority
of points lay closer than in the left diagram (¢) which tends to smaller d;; below
the diagonal.

Later in Sec.6.3, we will return to the display of high-dimensional data as
“ring” structures and measurements to modify its appearance.
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6 Application to Navigation
6.1 Bag of Words — Standard Representation for Text Mining

In the domain of the information retrieval and text mining text is very often
treated as bag-of-words and represented as very high-dimensional vector. One
may argue that this ignores completely semantic information word order —
amazingly the results justify this drastic step.

Given a collection of N text documents, first a vocabulary — a set of words
{w;} is determined. Words in text are always preprocessed by a suitable word
stemming procedure and filtering out of stop words. The vocabulary is then the
interesting part of all unique word stems, i.e. the most and the least frequent
words are rejected. Each text document t is represented by a feature vector
ft, where the components ft,z' are determined by

[t = TF(t, w;) log (DFZEZWi)) : (17)

TF(t, w;) is the term frequency and counts the number of times the term w;
occurred in document t. DF(w;) denoted the document frequency and counts
the number of documents where the term occurred. This standard weighting
scheme emphasizes rare words as more significant than common words, for
more details see [16]. Proximity (= 1 — ) and therewith dissimilarities of two
documents is computed with the cosine metric

— — — — . — f
0y =1 —cos(ft,, ft,) = 1= fi fi., with f' = A (18)

and efficiently implemented by storing the normalized document feature vec-
tors f'.

6.2 Computing the Movie Representation:

As an example we used a text collection consisting of film critiques taken
from the rec.art.movies.reviews newsgroup. For the purpose of identification
extra information, such as the film genre classification, is drawn from the
internet movie database (http://www.imdb.org). The vocabulary with 5084
distinct terms was extracted and the feature vectors f_; computed (for more
details consult [11]). Based on this intermediate review database we selected
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all movies of the categories animation and science-fiction which had more than
five recorded reviews. Then, each average movie feature vector was calculated
from the set of its associated reviews

fn = > f% , A ={t|t describing movie m}. (19)
tcA

In contrast to the usage of directly accessible, brief movie plot description
this procedure increases not only the amount of source information but also
increases author independence by averaging.

6.3 Two Examples of Proximity Contrast Modulations

orig_dist
1750 9

1500
1250
1000

750

0 0.2 0.4 0.6 0.8

Fig. 13. (top:) Histogram of dissimi-
larities d;; for the selected movies.

Fig. 14. (right:) Hyperbolic MDS result for the linear disparity transformation Eq. 18
and Eq. 16. The typical “ring” structure is visible due the high dimensional (cmp.
Fig.12). The red “x” mark science-fiction, the black “A” animation, and the
green “+” mark films belonging to both genres. Note, this genre information was
used in post processing but not included in the information input.

How does the dissimilarity structure of the 132 selected, well reviewed movies
compare to a high-dimensional Gauss-distribution? Fig.13 shows the his-
togram of the obtained 8646 dissimilarities. Comparing them to Fig. 5.4 sup-
ports that the “effective” dimensionality is lower than the 5084 dimensions
of the movie feature vectors f Fig. 14, displays the H-MDS picture with
the typical ring structure previously discussed. The markers allow a visual
assessment of the mapping quality: While the genre information was not in-
cluded in the input, the H-MDS approach found a clear genre separation from
the text corpus: the “A”-marked animation films are well separated from the
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“x”-marked science-fiction group. The three movies, “+”-marked belong to
both genre and became indeed located in the border zone.

While the “ring” structure is over all the most distance preserving — for visu-
alization purpose, it is not necessarily the most advantageous to navigate in
a ring of object, or here, a ring of movies.

As seen before in Fig. 5.4, the higher the dimensionality, the more the pair
distance distribution is systematically shifted to larger values, whcih causes
the ring appearance. Inspired by work from [5] we experimented with counter
measures. The basic idea is a non-linear transformation D(.), which shifts
effectively the high-dimensional dissimilarity modes back to lower effective
dimensions. This enlarges the relative differences of pair distances and can
therefore be considered as a contrast enhancement. In the following two func-
tional concept are examined.

mapped_dist
o4 |
0.35 ;
0.3 i’
025
0.2 i’
0.15 ;
0.1 ;
0.05 |
i P o, mop | omog - ) ) )
0O 01 02 03 04 05 06 0.7 O.B()rig(i st
mapped_dist‘ M ik
800 A1 |
Fig. 15. (a, top left:) First contrast enhance-
ment function Eq.20 as (0;;, D;j) scatterplot.
(b, lower left:) Dissimilarity D;; histogram
‘ ‘ ‘ (¢, top right:) H-MDS map (see Fig.14 and
0 0.1 0.2 03 0.4 text)

The first is a linear dissimilarity shift with clipping to a minimal value D4 > 0
Dij = max( 5ij - (SA, DA) (20)

Fig. 15a displays the transfer function for §4 = Qs+ (0.01) equal the 1 %percentile

of the 6;;—distribution (ignoring all §; = 0 elements). The clipping to a pos-

itive minimum D, = 0.01 provides a minimal repulsive force between data
pairs. In the resulting dissimilarity distribution D;; (see histogram Fig. 15b) a
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clear peak is visible (containing 1% of non-zero pairs). The H-MDS result in
Fig. 15¢ lost the ring hole (Fig. 14 and exhibits some narrow clusters.

mapped_dist
os[
04
03 |
02 f
o1 |
pom o, mm ij\ L L L L L
0O 01 02 03 04 05 06 07 08 09
orig_dist
1000
mapped_dist M 7::7
800 All L
600 - - L
400 -
oo | Fig. 16. (a, top left:) Second, smooth contrast
enhancement function Eq. 21 as (d;;, D;;) scat-
‘ terplot. (b, lower left:) Dissimilarity D;;
0 0.1 0.2 0.3 0.4 0.5

histogram (¢, top right:) H-MDS map.

The second transformation aims at a smooth, edge-free transition. The func-
tion is a piecewise polynomial

DA if 0 < 5ij S 5A
Dij =« DA + 01(62']' — 6,4)2 if 6A < 6ij < (53 (21)
Co + c3 62’]’ if 63 < (Sz'j

which shows smooth transitions at the connecting control points A = (54, D)
and B = ((53, DB) with

DB—DA DB_DA

C1 = m, Cy = DB — (SBC?,, and C3 = 2m

(22)

Fig. 16a displays the two linear pieces and the middle square connection for
A = (Qs+(0.001),0.01) and B = (Qs+(0.5),0.25). The resulting dissimilarity
distribution in Fig. 16b is smoother also in the low D region. The H-MDS
Fig. 16c mapping is a reasonable compromise between roughly uniform dis-
tribution with good visibility and navigability of each object. Compared to
Fig. 15 the smooth transition version displays a wider cohesion and improved
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purity of the “A”-marked animation genre. The narrow cluster, mostly Dis-
ney World cartoons (see also the fully labeled snapshots in Figs. 18ab, 19ab)
become wider and better distinguishable. But still, clear micro clusters are vis-
ible, giving insight to extraordinary film relations. E.g., the top left A pair (11
o’clock) represent “Toy Story 142”7, the x-cluster at 7 o’clock can be identified
as four “Alien” films. See Figs. 18ab, 19ab for further snapshots with labeling
turned on.

0.08 T
s stress(alpha) ]

0.07
0.06

: Fig. 17. The rest stress Ey» versus the
dissimilarity scaling a in Eq.21 shows
a minimum at « = 9.4. This shows the
natural advantage of the MDS embed-
ding in the hyperbolic space with its
properties of an locally, exponentially
growing neighborhood.

0.05 [
0.04
0.03 [

0.02 &

Finally, Fig. 17 answers the question whether an hyperbolic embedding of this
data set is advantageous. Yes, it is, as seen at the stress E(a) minimum for
a = 9.4. If the dissimilarity structure would prefer a Euclidean flat embedding
then the stress minimum would appear at a diminishing small « level.

7 Discussion and Conclusion

The snapshots in Figs. 18,19 give a glimpse at the potential exploratory usage
of the introduced H-MDS, the hyperbolic multi-dimensional scaling technique.

Obvious clusters like the “Star Trek” group, or the proximity of “Bug’s Life”
and “Antz” strike. Cineastes may want to mine further examples in the ap-
pendix figures. Note, that no extra information was imposed. The spatial
structuring was automatically determined, driven by the (dis-)similarities of
word frequencies in secondary, descriptive texts of totally unrelated authors.

These results show that the H-MDS approach is well suited to support “seman-
tic browsing” in datasets or document collections. Compared to the HSOM
approach with a fixed grid [11], the H-MDS freely builds a spatial structure
and can therefore display the closeness of objects — as seen, e.g., in the tight
“Alien” cluster.

Through the choice of the dissimilarity transformation D(J) (i) the amount
and resolution of the visible information can be adjusted by scaling o in Eq. 16;
This extra degree-of-freedom can be used to choose a compromise between
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visibility of the entire structure and space for navigation in the detail-rich
outer areas. It is certainly possible to integrate the optimization of o in the
overall minimization. However, for mapping problems with IR* topology, this
would obviously lead to zeroing «, which is not intended.

(77) Non-linear dissimilarities transformations can serve as contrast enhance-
ment. The piecewise composed Eq. 20 or Eq. 21 illustrate how the inherent dis-
tance properties of high-dimensional distribution can by compensated. They
shift the elevated distances to lower values and regulate the base repulsion
between data pairs. The result is a wider spread-out distribution in IH? with-
out ring hole and tighter clusters. The compactness of the clusters can be
accommodated to the desired detail visibility and readability of the mapping
result.

From MDS the H-MDS inherits the efficiency scaling behavior of N(N —1)/2
required dissimilarities for N points. On the positive side it also allows to
process non-vectorial data, available only as pairwise proximities.

From the embedding in JH? this new approach profits not only from the ex-
tra space for compressing semantic relationships. It also gains the superb vi-
sualization and navigation properties, which were found to yield significant
improvement in user task time compared to traditional browsing methods.

Furthermore the embedding of the data in the hyperbolic space reduces the
overall stress compared to a conventional, flat embedding in the IR? as seen,
e.g., in Figs.7, 9, and 17. This advantage is certainly a consequence of the
exponential growth of the neighborhood around each point. It suggests the
hyperbolic plane as a good target space for a natural embedding of high-
dimensional data. An interesting side observation is, that the hyperbolic space
also seems to be a better terrain for circumventing local minima in a gradient
descent process.

Future work will address (i) the automatic customization of the proximity
transformation, (i) the combination of the H-MDS with the HSOM for visu-
alizing very large datasets. (i) When looking at the label intense appendix
figures, it appears obvious that the display can be successfully combined with
various search operations and suitable graphical attribution.
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