
Technical Report SFB360–TR–96–3

Service Object Request Management Architecture

SORMA
Concepts and Examples

Jörg Walter and Helge Ritter

September 27, 1996

SFB-360 Project D4 Introductory Report of the
Arbeitsgruppe Neuroinformatik

Technische Fakultät
Universität Bielefeld
D–33615 Bielefeld

Please send any comments, remarks or feedback via
Email: walter@techfak.uni-bielefeld.de

Tel: 0521-106-6064 Fax: +49-521-106-6011
For further information see:

http://www.techfak.uni-bielefeld.de/ walter/

2

Abstract:

We report on SORMA, the Service Object Request Management Architecture,
its concept, developement, and implementation examples. SORMA provides an
intelligent “object-bus” for distributed computing and inter-operation of robotics
hardware. It is a software framework for rapid development of object-oriented soft-
ware modules and their integration into stand-alone and distributed applications.

SORMA was designed to meet the requirements arising from a large set of spe-
cialized robotics components in a university research institution (see also SFB360-
TR-96-4). Our experiences show, (i) that many robotics experiments and applica-
tions typically have been a “one-of-a-kind” process, where often the software was
developed from scratch, even though much of the code is similar to code written for
other applications; (ii) due to the short life-time of single-usage code, extensive,
robust, and verbose exception handling is often sacrificed; (iii) early sharing and
integration of several complex application components, concurently developed by
a team of programmers, needs strong tool support.

SORMA encourages the re-use of components by interactive test, exploration,
and usage throughout the life span of a software component. At the same time this
user-friendlyness does not impair its real-time capabilities.

After describing the SORMA concept, we report on two hybrid integration
examples: The “Bielefeld Robot Checkers Player” and a real-time 3 D tracking
application combining vision and force commands.

SORM
SORM

SORM

Process A

SO

SO

SO

SORM

SO

Process C
Process D

Process b

SORMA

SFB360–TR–96–3

Contents

1 A Software Architecture: SORMA 5
1.1 Experiences that led to the SORMA Design 6
1.2 What is Special in Robotics? . 7
1.3 Particular Design Issues for a Software Infrastructure 9

1.3.1 Ingredients for an Object 10
1.3.2 NST and Time-optimal Invocation 10
1.3.3 A Small Interface to the “Service Object” 11

1.4 Introduction to the SORMA Architecture 12
1.4.1 Some SORMA Vocabulary: 14
1.4.2 SORMA Instantiation and Invocation 15
1.4.3 Service Object Names are Unique 15
1.4.4 Common facility: The Dictionary SO 17

1.5 SO Plant: “Service Flavors” on Demand 20
1.6 Error Propagation . 22
1.7 Remote Service Calls and Parallel Processing 23

1.7.1 Threads . 24
1.7.2 IPC Example: Cyclic Snapshot Buffer in Shared Memory 25
1.7.3 Real-Time and Invocation Performance 26

1.8 SCOTT : Service COmmunicaTion Tools 27
1.8.1 “scott” : the Inspector 28
1.8.2 “scottwish” . 28

1.9 SORMA – Bridges . 30
1.9.1 SORMA – NST Interactions and Graphical Programming 30
1.9.2 Exporting SORMA services via the DACS Bridges 30

1.10 SORMA Features . 31

2 Hybrid Integration Examples 33
2.1 Wiring Service Objects to Play Checkers 33

2.1.1 Why Checkers? . 34
2.1.2 The General Plot . 34

J. Walter and H. Ritter “SORMA”

4 CONTENTS

2.1.3 Divide, Conquer, and Connect 36
2.1.4 High-level Task-Directed Action Services 40
2.1.5 Discussion . 42

2.2 Visual and Force Tracker . 45
2.2.1 Motivation . 45
2.2.2 The Tracking Task . 46
2.2.3 2 D Image Analysis . 47
2.2.4 Learning 3 D relative Target Estimation 48
2.2.5 Sensor processing times 48
2.2.6 Asynchronous Absolute Target Prediction 49
2.2.7 Active and Reactive Force Input 50
2.2.8 Trajectory Correction . 50
2.2.9 Discussion . 51

3 Summary and Discussion 52
3.1 Design Issues . 52
3.2 Language Mapping . 53
3.3 Interface . 54
3.4 CORBA . 54
3.5 Future Work . 57

Appendix 58
A: Textual Messages and the Dynamic String Concept 59
Glossary . 60
Acknowledgments . 63
References . 64

SFB360–TR–96–3

Chapter 1

A Software Architecture:
SORMA

Hardware in “White Boxes”

The experience of several years of building and operating robot-vision labs1 showed,
that a substantial amount of effort easily dissipates in adaption of software com-
ponents to application specific needs. A lot of ideas and pieces of source code are
generated but often they remain a “one-of-a-kind” products and are not economi-
cally re-used. They need a suitable, standardized form in order to be sustainable,
achieve practical re-usability, and give the basis for incremental work.

For general computing and special support for artificial neural networks a pow-
erful software framework NST was developed in our connectionist research group
during the recent years (see below). The next section describes the important ex-
periences gained and introduces the non-standard requirements of a large collec-
tion of complex hardware components. Our robotics laboratory comprises among
other, an industrial 6 DOF Puma robot manipulator, a hydraulically driven dextrous
multi-fingered robot hand, force-torque sensors, tactile fingertip sensors, various
active and passive vision systems, as described in more detail in (Walter and Ritter
1996b). Connecting and inter-operating these components within a general pur-
pose high-performance Unix work-station environment in a suitable, convienient,
and efficient manner was a central aim for the development of SORMA .
The next section explains the problems, that had to be addressed and shows some
historic routes.

1see e.g. Walter, Martinetz, and Schulten 1991; Walter 1991; Walter and Schulten 1993; Littmann,
Meyering, Walter, Wengerek, and Ritter 1992; Walter and Ritter 1996b

J. Walter and H. Ritter “SORMA”

6 A Software Architecture: SORMA

1.1 Experiences that led to the SORMA Design

The Neural network Simulation Tool (NST) is a software framework developed
by Ritter (1995, 1996) for constructing neural network systems from a library of
object-oriented software components called units. Each NST-unit type implements
a particular functionality ranging from single neuron types to neuron layer and en-
tire networks, including also advanced networks types such as the PSOM network
(Walter 1996). Additional units implement functions for mathematical, file, and
image operations as well as graphical 2 D and 3 D data visualization, and many
more. The units have input and outputs (pointer to float typed “pins”, grouped to
“connectors”) that allow to connect them with other units and form “circuits” that
combine the functions of several units in the desired way (see also Tab. 1.1). This
leads to a versatile configurability when the units are instantiated and combines
this with a very fast operation of the circuits, once everything is wired up.

The question how to connect the Puma robot to a NST-program that runs on
another, faster graphic workstation led to the development of two NST-units: (i) a
Puma-NST-unit with an interface for position command information etc. and (ii) a
special NST “rpc-unit”, which could mirror the interface of a remote NST-unit as a
proxy, using remote procedure calls for the communication with the remote NST-
unit. The remote NST-unit is wrapped in a specially configured process and can
run on any other Unix computer in the network.

The NST “rpc-unit” Client-Server Concept

This architecture follows the client-server paradigm, where a general resource
is made available by a process, the so-called server. The server provides a pre-
compiled set of remote callable functions to one ore more callers by listening to
socket calls bound at a specific pre-compiled and registered rpc program number.
The calling client process (running on the same, or a different host in the network)
calls the remote server procedure similar to a subroutine call. The arguments (struc-
ture) are packed-up, sent over the net, unpacked, the server function is called, the
results are packed, back-transported and unpacked. All this finds a certain amount
of support by the (Sun) RPC, the Remote Procedure Call protocol, bases on TCP/IP
(Transport Control Protocol / Internet Protocol), see e.g. Bloomer (1992).

The NST-rpc proxy unit solved some of the common problems occuring when
using plain rpc calls, including: (i) overhead in building a connection; (ii) the
procedure call table and the interface definition is static (fixed at compile time).
This allowed different kinds of NST-unit types to be wrapped and compiled into a
server, which follows the idea of dynamic instantiation of multiple remote units of
various kinds. On the client side they could be connected as if they were local (see

SFB360–TR–96–3

1.2 What is Special in Robotics? 7

also the proxy object in Fig. 1.6).
It actually worked fine – as long as nothing went wrong – but nevertheless,

debugging could become hairy and some problems remained unsatisfying. In the
following section, we analyze these difficulties further.

1.2 What is Special in Robotics?

As described before, the Unix process controlling the Puma robot is a special dual-
threaded process. One thread is the planning level and may take its time, the other,
the robot low-level control task (thread) has hard real-time constraints: (i) hard
dead-lines (available time 10 ms, non-graceful with no time fault tolerance) with
(ii) certain system calls restriction (e.g. allocation of virtual memory is here for-
bidden, since it might require memory paging to disk). It might not be obvious to
non-experts, but

synchronous robot control is an ongoing decision making process .

Involved risks are as real as the actuation happens in real-world. This makes a
huge difference between real-world actuation and virtual reality simulations (or
pure perception and cognition tasks). These decisions are potentially fatal to man
and machine. They require a lot more care and consideration whether an uncertain
information is acceptable or not.

“Safety first” translates to “in dubio pro stop-and-exit”. This works great and
makes experimentation really safe, simple, and reliable. Safety circuits every-
where, in form of hardware (stoppers, brakes, power electronics, force sensible
table etc.) and software (consistency test, checksums, range checks etc.) are dis-
tributed in many layers and silently help to watch for trouble.

Particularly helpful are those watchdog circuits, which are able to tell what
went wrong before they engage into one of the shutdown procedures. This includes
three aspects:

(i) generating a meaningful signal (containing information);

(ii) message transfer to the user (that he becomes aware of the event);

(iii) presented in a form that the human can quickly learn about the problem –
with decent effort (the error code 42 or a core dump may contain the hint of
the day).

Aspect (i) concerns the circuit author, he will probably be nice and generate a
signal – if (ii) the system architecture does provide transport and he can expect
that the user/operator has interest in learning about the problem (iii) (and the sales
fellow doesn't veto).

J. Walter and H. Ritter “SORMA”

8 A Software Architecture: SORMA

When designing a more general, reusable software interface for operating a
robot, the following aspects need particular attention: (i) a helpful robot inter-
face needs extensive consistency checks on a high level of abstraction, in order to
generate helpful information on possible command mistakes. Lower-level safety
switches are too silent and non-recoverable. (ii) The transport and (iii) delivery
of exception messages must be assured. (iv) Murphy's law works once-in-a-while
and (v) added consistency checks (i) is imperfect - particularly in the phase when
new code gets developed. In the last two cases the Unix robot control process will
terminate, which has the consequence that the state of this process is lost. Any pro-
gram for gathering data or making long-time tests should be prepared not to loose
many valuable data etc. One solution is to make the (single process) user program
restartable from a back-up state previously saved. The other solution is to split the
task into a (save) user program and the robot serving process. The Unix operation
system (OS) is employed to set up firewalls against program crashes (in the robot
process). When using RPC this works across the Internet (client–server concept,
see glossary p. 60).

The really hard problem starts later, after a possible “fire” is over. Assuming
the problem cause could be solved, the robot serving process is started again, and
the robot starts an initial motion into the park position waiting since for new client
requests. We need the ability to resume the over-all task, which means in the
client–server architecture to re-connect. One part is the management of the rpc
connection (see below), the other how to proceed with the task execution. The
robot and its control task is a rather complex state machine. To resume operation
in the desired way the expected robot state has to be reached and then the desired
operation executed.

Two principal designs appear: (i) the interface allows state transition calls,
analogous to any robot control language; (ii) a complete state information is coded
into the software interface.

The consequences for (i) are that each remote request has to manage the restart
case by its own. The resume case includes requesting the correct sequence of state
transition calls.

Our first implementation of a remote callable NST unit was a type (ii) design.
The basic robot configuration was done in a text file, for setting up the more com-
plicated things, (transformations, safety boundaries etc.) the rest was set up in the
call interface - restricted to arrays of float2.

The effect could be called premature code freezing. Because any expansion of
the state and operation options changed the interface definition, it rendered previ-

2The NST-unit interface restriction to the type float is lifted in the newest NST and NEO releases
(Ritter 1996).

SFB360–TR–96–3

1.3 Particular Design Issues for a Software Infrastructure 9

ous code too easily useless.
Last not least, research and development in the robotic domain involves a sig-

nificant amount of interactive testing. Automatic test programs are not recom-
mendable in an early development phase (risk). Here we find a gap between the
easy-to-memorize symbolic variable and procedure names, which we learned to
program - and the run-time optimized coding by numbers. (e.g., floats and op-
codes). Therefore, we like to have understandable clear-text test-suites in order to
(i) resist the decay of the code authors decryption capabilities and (ii) to share
their value with other users. (iii) They should allow to overwrite previous config-
urations in order to interactively tune parameters - without the need to edit mature
configuration files (versioning problem).

1.3 Particular Design Issues for a Software Infrastructure

The above reported experiences were extremely valuable for the complete re-design
of a software structure aiming at:

rapid building of applications by assembling components

rapid development of better re-usable building blocks

wrapping hardware in “white boxes”3, which means that the box can be ex-
tended, specialized, and inspected.

interoperating complex hardware components

distributed computing with a helpful, intelligent infrastructure

Despite the fact that the development started rather spontaneous, it lead to a more
general architecture, called SORMA discussed below. It turned out, that it fulfills
many generally put up demands for a state-of-the-art distributed object infrastruc-
ture as those are emerging from industrial software standardization efforts, e.g.
driven by OMG (Object Management Group, CORBA) or Microsoft (COM/OLE).
SORMA is not multivendor oriented, but takes a lot of care to be 100 % multiplat-
form compatible on all our Unix architectures (see Walter and Ritter 1996b). It
can not talk to Winword, but it is fast and well tailored to serve the special demands
of a robotics laboratory.

3The term white box and glass box is coined by Ivar Jacobsen (Jacobsen and et al 1992) and
pictures very nicely the contrast to a closed black box.

J. Walter and H. Ritter “SORMA”

10 A Software Architecture: SORMA

1.3.1 Ingredients for an Object

The Object Oriented Programming (OOP) paradigm defined an software object and
its characteristics the following way (see Booch 1991; Orfali et al. 1994): it is a
piece of code that owns private data and provides services through methods (=pro-
cedures). A class is a template (C++) that describes the behavior of a set of alike
objects. To be more precise, an object is a run-time instance of a class. The three
main properties of an objects are: (i) The objects gives only procedural access
to the private resources, encapsulated by the object. Methods and public instance
data are part of the interface, published by the object. (ii) Polymorphism means,
that the same method can do different things, depending on the class that imple-
ments it. (iii) Inheritance is the mechanism how sub-classes can be derived from
existing parent classes. Data structures and methods can be added or overwritten.

1.3.2 NST and Time-optimal Invocation

How does NST implement this ideas? Despite NST is programmed in the lan-
guage C, it has all principal features of an strong object-oriented approach. The
inheritance property finds classical OOP support only on the first (sub-)class level,
i.e. for different NST-unit types. Any further specialization can be done at run-
time, depending on the arguments given to the instantiation method.

This is a rather interesting and powerful feature: it allows a bit more than
the classical late-binding of the object oriented programming (OOP) paradigm.
Binding refers to the linking of the software interface between two objects. Late,
or dynamic binding means, the interface is determined when the message is sent,
in contrast to static binding, which is fixed at compile time.

Name of NST Unix OS Kernel SORMA
class unit type device driver service class
boot call – init() register-service-class
object unit e.g. kernel inode service object (SO)
create call create unit(args) open(args) create(name) [or –]
job exec() & adapt() read/write(args) exec(args) [or text SOR]
control call ctrl (int) ioctrl (args) ctrl (args) [or text SOR]
misc. load/save(file) dbx(args)
free remove release close remove

Table 1.1: Comparison of names and methods in three environments: NST, a clas-
sic Unix kernel, and SORMA . Despite they are not written in a typical OOP lan-
guages like C++, they share the principal concepts of OOP.

SFB360–TR–96–3

1.3 Particular Design Issues for a Software Infrastructure 11

Tab. 1.1 lists methods, which each NST-unit class must implement (or inherit).
It shows, that the two main functional methods exec and adapt have no arguments.
All required arguments must be given at the public data interface (shared values
at “connectors” and their “pins”) – or at creation time. E.g. an image processing
NST-unit object can operate on a monochrome or a RGB color image representa-
tion. The operating behavior is configured at instantiation time and leads to the
construction of an object with one or three “connectors” (per image IO). This is a
form of late-binding or “run-time compilation” since the circuit description code
not only creates and connects objects, it also dynamically can specialize the (sub-
sequently static) interfaces and methods.

The special power of NST is the versatile configurability at unit construction
time and the specialized time-optimal execution of the “circuits”, once every-
thing is wired up. This concept of shifting as many of possible preparing tasks to
the first call, can significantly accelerate the execution of the main functionality.
How significant this effect is, depends on the amount of particular overhead time,
the repetition rate, and the time-criticality of the execution task. In the real-time
domain of robotics these cases are given – supporting this feature opens the domain
of time-critical sub-tasks.

1.3.3 A Small Interface to the “Service Object”

We tried to combine the good sides of both worlds, the real-time capable and the
smart object oriented interactive world. The found compromise is named by its
purpose: the service object. It shall serve the need to wrap hardware resources
in white boxes – a special kind of object. The interface definition is a trade off
between flexibility and expandability versus small and strict interface definitions
where good interactive support becomes feasible.

Tab. 1.1 lists, next to NST, the interface methods of a classical Unix device
driver (Beck et al. 1994). As a run-time optimized interface is shows strong sim-
ilarities. All three share the idea of separating procedural requests into the desig-
nated “execution” functionality and another request call, controlling the resource
(see column “job” and “control” in Tab. 1.1).

For SORMA it appeared very attractive to foresee two separate levels of pars-
ing. One possibly complex and detailed parsing mechanism (clear text - with more
“muscles”) and a second call interface (exec) which can be designed, e.g. to meet
real-time requirements (no parser) or any desired level of comfort (see Sec. 3.3).
The “CTRL” method should implement a textual parsing of the sent string mes-
sage in analogy to the list of arguments (argv) passed at Unix program invocation.
This is in contrast to the “EXEC” method, which is unrestricted in its interface
design. The advantage and further details will be clarified later.

J. Walter and H. Ritter “SORMA”

12 A Software Architecture: SORMA

The “DBX” method is an extra inspection method for accessing meta-information
from the service object, e.g. version, compile time, verbosity flag, audit trail of
“CTRL” method requests. Additionally, the class implementation must provide
one function to give a clear-text “dump” of the complete particular data structure
encapsulated by the object instance. All other methods are inherited.

As public data interface the service object offers a data transport structure. We
choose to implement a strong interactive support for a particularly small structure,
which is a set of the most important data types, i.e. string, float[], int[], any[] ([]
means 1 D array or vector). Since it includes an “any” block (untyped or “opaque”
typed, for e.g. image data) is can be converted to arbitrary complex structures, suit-
able support can be found in XDR - or NDR-libraries (Bloomer 1992; Fink et al.
1995)). Together with context information (from, to, call/return code, and event
message “tdbx” string) this transport structure is used in a bi-directional way (see
Sec. 1.4.1).
Before we want to proceed in explaining more details in the design of the service
by itself, we next introduce the general framework.

1.4 Introduction to the SORMA Architecture

What is the advantage of using an object? The essential argument is, “the code gets
re-usable”. Fine – but in a university environment, not too many long-time software
programmers are around, who experienced and internalized the need of re-usable
code. Many things are done and re-done again. Even when code is intended to
be reused, often only some fragments survived. And, too many good ideas get
thrashed when the authors leave.

Therefore, we need - beside a decent object structure, a good argument for
convincing a non-acquainted user (programmer), to comply to a standard interface
structure. The cost-benefit view shows always the initial effort spent to learn the
rules and usage. Here SORMA offers the incentive of immediate supporte for a
ready service object class in four scenarios, shown in Fig. 1.1. After source code
compilation a class implementation can be linked to:

(i) a program (stand-alone or mixed client);

(ii) a server stub which produces a SORMA server - in the following called by
the synonym “daemon” (in order to better discriminate between server pro-
cess=daemon and service=functionality in a service class and its instances,
the service objects.) This requires the little effort of a inserting a few lines
into a configuration file and a makefile (copy-paste-modify);

SFB360–TR–96–3

1.4 Introduction to the SORMA Architecture 13

SO
class

SO
class

SO
class

SORM

main()
Program

Server
Stub

Daemon Inspector

Terminal

scottwish

GUI
Windows

main
Tcl/Tk

In
te

rn
et

SO
class

SORM SORM SORM

(iv) (ii) (iii) (i)

Figure 1.1: SORMA services instantly find support in four process configurations:
(i) Stand-alone process, which is a regular program with local calls;
(ii) server or daemon process for shared network access from other application clients and
standard SCOTT inspectors;
(iii) interactive local (and remote) service object requests (SOR) are conveniently facili-
tated in the line oriented inspector mode.
(iv) The SORM-Tcl/Tk coupling allows easy configuration of an application specific GUI
(Graphical User Interface) to communicate to local (and remote) services. Note, the stan-
dard tool executables “scott” and “scottwish” (self type (iii) and (iv)) are readily available
to remotely test and use a type (ii) configured service. Therefore, in many cases one single
daemon configuration is entirely sufficient (for short self tests, a type (iii) inspector is a
run-time option to each daemon, by default only a lean version without “scott's” extended
command line editing, completion, and history features).

J. Walter and H. Ritter “SORMA”

14 A Software Architecture: SORMA

(iii) command-line oriented inspector, giving full access to all built-in (and re-
mote, daemon-provided) services. This feature offers immediate test-suite
comfort, see Fig. 1.1 and Sec. 1.8.1.

(iv) graphic user interfaces (GUI) are designed by Tcl/Tk scripts, which allow
easy request to built-in (and remote) services by simple mouse clicks on
screen buttons, sliders etc.

SORM
SORM

SORM

SOR
Dispatcher

SO
Repository

SOR
string-struct
Converter

SO
Plant

SORM

CO
Plant

Client
Stub

CO
Repository

COMM

Process A

SO

SO

SO

SORM

SO

Process C
Process D

Process b

S O R M A

Figure 1.2: The core of SORMA , the Service Object Request Management Architecture
is SORM and COMM, with development support by SCOTT (Service COmmunicaTion
Tool). The depicted SORM comprises several components, which are kept in this iconic
arrangement for detailed explanation in the following pictures.

1.4.1 Some SORMA Vocabulary:

Service Object Request Management Architecture: SORMA is a framework
and infrastructure to communicate to dynamically created Service Objects
(SO) upon SORs (see below). This structure is also called “object bus” or
also distributed “field bus”) See Fig. 1.2.

Service Object Request Manager: The SORM is responsible for efficient (i) build-
ing, (ii) maintaining, and (iii) sharing of multiple Service Objects (SO) –
efficient w.r.t. to (i) time and (ii) memory.

Connection Object Management Module: The COMM communicates requests
to external, distributed SO served by daemons - on the same host or else-
where in the Internet network (it is a module, since a stand-alone process
may not need it.)

Service COmmunicaTion Tool SCOTT offers development and usage tool sup-
port for services, which are configured as SORMA daemons (see Sec. 1.8).

SFB360–TR–96–3

1.4 Introduction to the SORMA Architecture 15

Service Object Request: A textual service object request (SOR) is a single string,
containing three main parts:

where the selector EXEC,CTRL,DBX uniquely deter-
mines the called method type (see Sec. 1.3.3. The request translates
to the optional variables in the transport structure – segmented by reserved
tokens:

TMSG FMSG IMSG TDBX

Return values can be converted back to a text string, the ' ' is
then replaced by the token pair 'RET ' (identifying the success or
exception identifier). This facilitates bi-directional conversion of the trans-
port structure (excluding the untyped any[] message).

1.4.2 SORMA Instantiation and Invocation

A sequence of illustrations shall explain: how service objects are instantiated and
invoked; what the two principal request techniques are: sending a string message
request or by direct call-by-reference (previously gained by a reference-by-name
request); the remote service object request management is illustrated, and an ex-
ample given, how two SORMA clients share resources on two daemons. Please
consult Fig. 1.2 - Fig. 1.7 and the supplementing explanations.

The SORM Manager itself allows introspection by implementing a special SO
with a common interface. By this means, the SORM can be instructed and queried
about state and capabilities. SORMA network agents become possible.

1.4.3 Service Object Names are Unique

Each Service Object (SO) is associated with a unique name. To facilitate the SO-
creation and repository mechanism the full SO-name is constructed in such a way,
that the service class and possible remote daemon address can be quickly ex-
tracted:

Syntax Example SO type
local SO name

: : remote daemon explicit
remote daemon alias
remote daemon default

Local SO-names (: with lowercase class name and without remote extension)
identify a locally served SO - this instantiation is described in the next section.

J. Walter and H. Ritter “SORMA”

16 A Software Architecture: SORMA

SO

SO
Repository

SO
Plant

Caller

SO
Repository

SO
Plant

Caller

1

2

SO

SO
Repository

Caller

SORM SORM SORM

(1.a) (1.b) (2)

Figure 1.3: The SORM builds and maintains Service Objects (SO) by unique names. Here
the get-SO-by-name call is illustarted.
(Left two:) If the repository does not hold the requested SO-reference, the plant is engaged
to dynamically instantiate the service object (see also Fig. 1.8).
(Right:) Further requests to the same name will be referred to the same SO (shared access).

SO

Caller

SO

SO
Repository

Caller

SORM (1) (2)

SOR
Dispatcher

SOR
string-struct
Converter

1

1

3
2+5

4

SO
Plant

Figure 1.4: SORMA offers two alternative ways of calling a service object (SO): call-by-
reference and request-by-name.
(Left:) call-by-reference is the time optimal invocation of a SO and is, beside a debug
hock, essentially as fast as a sub-routine call, since all arguments are referenced as well. It
requires a previous get-SO-reference-by-name call (Fig. 1.3) to receive the SO-handle.
(Right:) request-by-name is a textual, one-step invocation. The Service Object Request
(SOR) is a message containing the SO-name, request type, and all arguments. The text
message is send to the dispatcher (strDispatch(), 1), gets converted (2) and send to
the SO (4) found in the repository (3). If the SO does not already exist, the SO-plant will
create it (not shown 3.1, 3.2 = step 1, 2 in Fig. 1.3). Finally, all results of the SO-call (4)
are converted into a text message (5), which is suitable to human readers as well as text
oriented languages (e.g. Tcl).

SFB360–TR–96–3

1.4 Introduction to the SORMA Architecture 17

SO

Caller

SO

SO
Repository

Caller

SORM

(A) (B)

SOR
Dispatcher

SOR
string-struct
Converter

SO SO
foo.a foo.a bar bar

SORM

Figure 1.5: Hierachical Service Object call. A SO calls a sub-service, (A, left:) by refer-
ence or any mixed: by reference and by name (B, right). Each SO carries a unique name.
The dashed lines indicate the optional COMM module, which facilitates the remote SO
invocation, see Fig. 1.6.

The last three types are variants of a SO request to a () remote daemon.
The connection object management (COMM) needs the information where to lo-
cate the daemon in the Internet and which port number the process has
registered. The SORM at the daemon will process then the (there local) request.

The latter two address specifications - by alias () and by default () - are
opaque network addresses. These daemon locations need not to be known at pro-
gramming time. They are resolved at connection create time (honering also the
location name “self”). They are the hooks for a central, or de-central “object bus”
configuration mechanism. Name resolving could be used, e.g. for load balancing
and object trading (see discussion). Currently we delegate this task to the individ-
ually configurable dictionary service object, described next.

1.4.4 Common facility: The Dictionary SO

One common service class is the dictionary. Currently, one special object instance,
named dict, is employed for (i) daemon name resolution and (ii) as part of the
service instantiation procedure, as described below.

The dictionary is essentially a service to table look-up a single index word and
expand it to a sequence of words.

The table can be filled in various ways: (i) entries from process environment
variables; (ii) explicitly; (iii) loading from one (or more) text file with the simple
line format “ ”. It facilitates recursive definition of
entries by index word substitution (marked by keyword or special character, at load
time).

J. Walter and H. Ritter “SORMA”

18 A Software Architecture: SORMA

SO
Repository

Caller
(Client)

SO
Plant

CO
Plant

Client
Stub

CO
Repository

SORM

Server
Stub

SO
Repository

(Daemon)

SOR
Dispatcher

SORM

SO
Plant

1

2

3

4

5

6

7

8

9 10

11

12

In
te

rn
et

SO
Proxy

Caller

Client
Stub

SORM

Server
Stub SO

SO
Repository

SOR
Dispatcher

SORM

CO

(Client) (Daemon)

In
te

rn
et

Figure 1.6: Creation and later usage of a remote Service Object by Proxy SO.
(Upper scheme:) The first get-SO-reference-by-name call to a remote Service Object (SO)
leads to a number of steps. Since the client SORM fails retrieving the requested SO in
the SO-repository (1), the SO-plant (2) instantiates (3) a new proxy SO. The necessary
daemon communication is handled by the Connection Object, CO (6), which is built, if not
already available (4,5). The SO request reaches the daemon SORM on the right side via
TCP Internet protocol and stubs 7 and 8. There, the get-SO-reference-by-name induces the
instantiation of the desired SO (10, 11, 12 as in Fig. 1.3)
(Lower scheme:) Requests to the remote service object look identical to local SO-requests
– since they are local requests to the SO-proxy. The SO-proxy completely mirrors the
remote SO w.r.t. functionality, exception messages, input, and output. The proxy does not
mirror irrecoverable daemon failures, which facilitates protected invocation. Instead, its
connection object and the COMM, the Connection Object Management Module would
signal the problem and try to semi-autonomously reconnect to a newly started daemon.

SFB360–TR–96–3

1.4 Introduction to the SORMA Architecture 19

SO
 [d
foo.b

Caller

Client
Stub

SORM

Server
Stub

SO
Repository

SOR
Dispatcher

SORM

(Client) (Daemon "d1")

SO
Proxy
bar@d2

SO
Proxy
bar@d1

SO
Proxy
foo.b@d1

SO
Proxy
foo.a@d1

CO
 d2

CO
 d1

SO
 [data]
foo.a

SO
 [data]
bar

Terminal

Client
Stub

SORM

Server
Stub

SO
Repository

SOR
Dispatcher

SORM

(Daemon "d2")

In
te

rn
et

SO
Proxy
foo.a@d1

CO
 d1 SO

 [data]
bar

(Inspector Scott)

Inspector

SO
Repository

SOR
Dispatcher

SOR
string-struct
Converter

Figure 1.7: The SORMA (Service Object Request Architecture) allows protected and
shared usage of remote services, distributed in the network. Here, an example with two
processes (left side) concurrently requesting remote Service Objects (SO) on two separate
daemons (“d1” , “d2” , right side). (upper left:) The client processes has already built four
proxy SOs using two connection objects (CO). The request to the SO proxy with name
“bar@d2” is routed to the SO “bar” at daemon “d2” on the lower right. The connec-
tion object maintenance is responsibility of the COMM (Connection Object Management
Module) and more efficient by bundling communication requests, normally per daemon.
(Lower left) The SCOTT inspector grants interactive service object requests to all exist-
ing (and possibly creatable) remote SO. E.g., the request “foo.a@d1 CTRL -help
-dump” (typed to the terminal) gets routed to “foo.a” at daemon “d1” (upper right)
and will return the on-line help and a report on all data, encapsulated as indicated in this
particular service object (both methods, called by “-help” and “-dump”, are mandatory
to all service class implementations).

J. Walter and H. Ritter “SORMA”

20 A Software Architecture: SORMA

The load file structure is un-complicated and allows to take care on good
readability of entries. Therefore, it can cope with comment lines (also part line
comments after #), long multi-line definitions (backslash marked), and quoting of
words containing white spaces.

Since the dict is a regular service object, it can be contacted via a textual re-
quest, which allows querying, adding, removing, reloading, saving etc. of the dic-
tionary entries. Consequently, the SORMA architecture facilitates to remotely edit
the dictionary of another network daemon – at run-time. The next section will
underline the potential of this feature.

1.5 SO Plant: “Service Flavors” on Demand

Combining: “Shared” + “Easy Configurable” + “State-free”

One of the key design points of SORMA is the concept of service object instanti-
ation on the basis of a unique name. The name gets expanded into a list of object
configuration and state transition calls. Different names lead to the instantiation of
different service objects. Since the resulting SOs belong to the same service class
but usually exhibit modified characteristics, we call them also “service flavors”.

This name-to-configuration-instruction-list mechanism can be considered as a
form of built-in scripting. It solves the conflict between the three (before) con-
flicting goals of (i) serving hardware by shared server access, (ii) which is easy-
configurable, (iii) but still state-free. The script is associated with the service
object name, which is part of all initial SO reference calls, and textual SORs (see
Fig. 1.4). For remote SO calls, it allows the COMM (Communication Object Man-
agement Module) to efficiently take care about not only building, but also about
re-establishing connections to the desired service flavors, served by other SORMA
daemons. The following example illustrates, how the SO name determines a par-
ticular service flavor specialization.

As indicated in Fig. 1.3 and detailed for the request example “ ” in Fig. 1.8,
the SO-plant calls the registered SO class constructor function (class name) by
the full local service name. The common dictionary service resolves it and sup-
plies the desired list of words. Those should be parsed by the “CTRL” method
implemented by the object class.
Assume the dictionary service contains following entries:

foo.a -breakfast -where kitchen -tempo presto
foo.b -breakfast -where garden -freshJuice -tempo adagio

bar -tea 1.5 -ice crushed -lemon 0.3

and the service “CTRL” method knows what to do with those tokens. Requesting

SFB360–TR–96–3

1.5 SO Plant: “Service Flavors” on Demand 21

SO
Plant

SO
Repository
 dict => SO

foo.a => SO
...

foo => newfoo()
bar => newbar()
…

New
(newfoo)

Remove Sprint

CTRL EXEC

Service Class foo
Implementation

SO
foo.b

SO
foo.a

SO dict
 foo.a => …

foo.b => …
…

 1. first SOR to "foo.a"

2. name="foo.a" 3. foo.a

4.
 list of
para-

meters 7. new SO

5.

6.

Figure 1.8: The service object instantiation and specialization procedure when the SORM
is called for the name “ ” the first time (step 1b-2 in Fig. 1.3). The registered class
“ ” constructor function gets invoked “newFoo(”foo.a”)”, which retrieves the “recipe”
from the dictionary service. The “recipe” is a token list, denoting a sequence of state tran-
sitions. It gets parsed by the object's “CTRL” method and specializes the desired service
object flavor.

a service object instance will create an object, which has already parsed the
token list “-breakfast -where kitchen -tempo presto”.

The semantics of these tokens is subject to the interface definition of the im-
plementing class, here “foo”. There are many ways to suite special needs of an
application. To give a brief idea consider these opportunities: (i) when is
called it is clear that the tempo presto is requested. In case of re-connecting to
the process, everything is said, a “EXEC” call for is fast. (state memory)
(ii) The requester can change his mind and request a “CTRL” call “-tempo
piano”, affecting all future calls to (state change); (iii) Alternatively, on
special occasions, the client calls for an other favorite menu , then
and can be used interleaving, without affecting each other (parallel states);
(iv) If there are multiple clients, private object instances can be generated by du-
plicating the recipe of the service with a unique flavor name (non-shared). (v) If
desired, resource locking may be implemented by the class creation method.

The flavor instantiation procedure by names and stored parameter sets can be
associated with the process of “cooking”: “Expert cooks” (supplied by the class
implementation) prepare object flavors on demand (SOR) following the recipe kept
in the cookbook (dynamic table by dictionary).

In particular, the following aspects appear valuable:

J. Walter and H. Ritter “SORMA”

22 A Software Architecture: SORMA

The dictionary offers a compact format of defining a set of reentrant states –
a feature which facilitates a robust, failure-tolerant state machine server on
the required level of granularity (state-free robot serving, see Sec. 1.2).

The initial parsing procedure can be used

for configuration of the SO

for method specialization of the SO (reversible and irreversible, e.g. select
different execution methods)

for time-optimized invocation. The two-step service usage allows data prepa-
ration (pre-allocation and pre-computing of data structures etc.)

as a powerful and convinient default mechanism to initialize the internal data
structure of the service object flavor (multi-purpose, multi-user, with recur-
sive composition)

The NST-concept of “run-time compilation” clearly appears, but here, the concept
is more soft – the interface definition may pre-compile - and re-compile - its struc-
ture but can also operate as pure interpreter. The, service designer may gradually
“shift” between these two concepts.
Furthermore,

keeping a large variety of flavors in stock is a matter of inserting suitable
“notes” in the “cookbook” file (with the recursive word substitution in the
dictionary and a overwriting parser, sometimes storing just the differences is
enough). It is memory efficient, the service object is created on demand;

the “CTRL” parser mechanism is double useful: after the initial service con-
figuration the service may be re-configured by re-using the same parser struc-
ture. This facilitates clear-text configuration and property modification at
run-time;

the name of a sub-service object can be part of the configuration. This strat-
egy allows to program-by-name-picking- a-la-carte: by exchanging a sin-
gle sub-service name, the associated service configuration and “behavior” is
changed. This includes swapping of flavors as well as service classes (re-
quiring equivalent interfaces);

SFB360–TR–96–3

1.6 Error Propagation 23

1.6 Error Propagation

As already mentioned before, the general need for useful debugging and error in-
formation - generated and signaled back to the user - becomes a necessity in a
distributed operating system. They can guide to the needle in the heap of hay. Un-
fortunately, “software hay” sometimes exhibit emergent sharpness when smaller,
smooth looking heaps are put together. Therefore, the value of decent error re-
porting increases progressively with application complexity. In a development en-
vironment, this point can hardly be overestimated. From experience we'd like to
generalize and recommend: Never judge software robustness by the absence of
error messages – better check how meaningful generated warning messages are.

When the software is used in a distributed way, the programmer needs extra
support. If it is not available, the programmer gets frustrated: what to do with the
message in case the call is local or remote? Send to whom and how? Messages
sent to the standard error channel are unreliable, they may stay invisible and get
lost.

SO

Caller

SO

Caller

X

Figure 1.9: All occuring error, or any
other message, generated by a service,
is propagated back to the original caller.
This is achieved in a cumulative way and
across process and machine boundaries.

It is therefore important to enforce an error handling procedure. We found the
following useful:

unified procedure - identical for locally and remotely called services;

clear-text messages (human readable), but also unique error and warning
codes (symbolic processing), context information (source file, line);

discriminate three message classes: (i) verbose, (ii) warning, and (iii) er-
ror messages (determined by error code);

accumulate messages and send them back to the calling user - also across
process and machine boundaries (see Fig. 1.6);

programmer-friendly: easy-to-define a prototypical error message (definition
may be placed in the header file or anywhere in the source code, they are
semi-automatically integrated to a central table of errors); easy-to-invoke
(single macro) with optional specialization and text additions.

J. Walter and H. Ritter “SORMA”

24 A Software Architecture: SORMA

1.7 Remote Service Calls and Parallel Processing

Remote service requests in SORMA are based on the remote procedure call, which
is intended to behave like a local request (proxy). The disadvantage is, that the
calling client process blocks until the daemon call returns. This means, there is
only one (jumping) token of activity in a net of such connected processes (not
talking about anyway concurrent processing in various special hardware devices -
which we actually do want to interoperate (see Walter and Ritter 1996b). In a
single processor machine, this is perfect, since the operating system scheduler will
take care, that computing time is not wasted.

But still, in order to harvest the power of elsewhere potentially available com-
puting resources we must organize asynchronous interprocess communication. Sev-
eral canonical ways are possible: (i) Queuing requests and results (by message
passing with or without shared memory); (ii) non-blocking rpc request and call-
back from server; (iii) deferred synchronous request (call twice); (iv) giving up
on the idea of a called procedure using, e.g. stream based architectures (see also
(Fink et al. 1996));

1.7.1 Threads

Splitting into sub-tasks, one for central processing and others for asynchronous
remote communication management also need inter sub-task communication and
synchronization. Modern approaches simplify this by offering threads. Threads
are sometimes called “light weight” processes, sharing the same process memory
space and other resources. They can not magically accelerate any computing per-
formance (except in multi-processor systems supporting parallel thread dispatch),
and they can not solve the possible necessity to wait for communication IO (in-
put/output). What a thread library does offer, is programming support for perform-
ing process relevant operations during IO-wait states. This simplifies organization
of multiple blocking IO connections. Within one process several sub-tasks are dis-
tributed to independently scheduled threads. Since they share the same resources,
inter-task communication is simple, fast, but non-protected. Efficient program-
ming with threads, requires detailed provisions to keep system consistency when
resources and functions are utilized “simultaneously” by parallel threads (“thread-
safe” programming).

As in any parallel computation system, possibilities for socalled race condi-
tions, dead-locks, and starvation have to be carefully considered. Debugging of
these run-time failures become very soon very complex and difficult (combina-
torial explosion of cases). Furthermore, Schrödinger's problem for observing a
quantum-mechanical system re-appears: here the debugging disturbes the real-time

SFB360–TR–96–3

1.7 Remote Service Calls and Parallel Processing 25

performance of the observed system. Here, the interaction frequency scale and the
granularity of parallel sub-systems play an important role.

Since, the efficiency of sub-task switching on blocking IO channels involves
tight cooperation with the OS kernel, the peculiarities of the different vendor's
OS severely delay the standardization. We did not base the SORMA implemen-
tations on threads, simply because portable threads are not yet available on all
our Unix operation systems, which we want to see cooperating: SunOS, Solaris,
Iris4d, Irix5, Irix6, OSF1, Aix, NextStep, and Linux. E.g. the Posix “P-threads”
standard is very recently released thus we can expect more and more (fully) reliable
implementations without constantly floating definitions as seen is the past. manger

Caller

SO
Proxy

Caller

SO
Black-
board

SO
Proxy

SO
IPC
Stub

SO
IPC
Stub

Unix Sys.V
IPC

Resouce

Blackboard
Daemon

Unix OS
Process A Process B

Figure 1.10: SCOTT facilitates Inter-Process Communication (IPC) by shared access
to (upper branch) a mediating third daemon serving as black-board and (lower branch)
general Unix IPC resources. Specialized IPC service objects simplify the common access
by structuring the Unix resources and configuring access keys. Note, that IPC resources
are bound to the local machine – however, SORMA yields network access by employing a
local “scott” daemon on the target host via the proxy mechanism.

Fig. 1.10 shows the principal SORMA solutions for asynchronous Inter-Process
Communication (IPC) for regular “heavy-weight” processes. A third SORMA dae-
mon can be employed for doing a central blackboard service for multiple callers.
For processes running on the same host, the Unix kernel implements (at least)
three IPC paradigms: (i) semaphore service (flags with atomic read-set opera-
tions) (ii) message queuing, and (iii) shared memory access.

By offering specialized service classes, the usual “heavy” set-up effort can be
turned to easy configurable service objects. These IPC stubs take care on agreeing
on access keys, and structure the raw resource in a specialized manner.

Since they are SORMA services, they are immediately available to remote
clients, when a suitable daemon is started (e.g. “scott”). By wrapping the host
specific IPC resources in a “white” SORMA box it can be accessed from anywhere

J. Walter and H. Ritter “SORMA”

26 A Software Architecture: SORMA

in the network.

1.7.2 IPC Example: Cyclic Snapshot Buffer in Shared Memory

One example of the SORMA IPC-stub concept is the service class implementation
(shmem w) working on the System V shared memory resource. Here, the emphasis
is the rapid (time-optimal) one-way transport of “snapshot data”. Sec. 2.2 will
report on a real-time application which uses this building block in several places
(Fig. 2.7).

The shared memory segment gets pre-structured depending on the specification
of the writer service object. This structure information is stored in the memory
segment header and available to any reader-SO.

Here, the concept is a snapshot multi-buffering, which means a certain num-
ber of blocks (snapshots) find place in the (pre-allocated = fast) shared memory
segment. They get written in cyclic order. This allows a configurable amount of
asynchrony of process, which desire to communicate either all, the most recent, or
the recent history of snapshots (note, that this includes single-, double-, triple-, and
multi-buffering).

Snapshot data consists of: (i) a data segment (of type float[] and type any[])
with (configurable) constant size; (ii) a counter, and a (iii) time stamp is automat-
ically appended, when a fixed sized record (snapshot) is written to shared memory.
This allow any reader to determine the age of each record.

The IPC-stub service classes for writing and the class for reading offer a cer-
tain amount of error checking and interactive monitoring (clear text formatting of
snapshop sequences etc.)

Besides the purpose of interprocess communication this service turned out
to be very valuable for a plug-in type process monitoring as well as for off-line
“flight recorder” analysis. When using a time optimized exec-method variant
(non-checking), the SO is fast enough to be used for debugging real-time code
(signaling passed source code lines) – a task which is otherwise, at least in our
particular case, rather difficult.

1.7.3 Real-Time and Invocation Performance

Real-time task are tasks with time constraints being part of their specification. Hard
real-time tasks have to fulfill specific dead-lines, while soft real-time tasks require
“best-effort” to meet the performance specification. A further main considera-
tion is the time-fault tolerance of a system. E.g. a processor overload situation
might compromise the keyboard response time (soft real-time) or might delay an
emergency-stop signal to a moving robot manipulator (hard real-time). Usually,

SFB360–TR–96–3

1.7 Remote Service Calls and Parallel Processing 27

Unix system are suitable only for hard real-time tasks on a time scale larger than
100 msec. Special effort is necessary to employ a Unix workstation for robot real-
time control (see Walter and Ritter 1996b) as required for the tracking application
described in the following chapter.

Depending on the time-criticality of an application the speed of communication
can play a crucial role. Here SORMA has the big advantage to offer service mi-
gration for the purpose of load balancing and in particular to improve performance
by choosing time-optimal invocation. As pointed out earlier, this can be as simple
as re-linking program code and redefining service locations in the dictionary file
(opaque addresses, see Sec. 1.4.3).

Invocation type min-max unit
F function call 0.11 – 0.45 sec
TO execSvc(@self) 0.25 – 1.5 sec
P execSvc(@localhost) 0.97 – 3.8 msec
P execSvc(@otherhost) 1.5 – 4.0 msec
S strDispatch(“nop@self EXEC”) 0.08 – 0.56 msec
S strDispatch(“nop@self EXEC FMSG 10 ..”) 0.20 – 2.0 msec
M execSvc(shmem) 12 – 98 sec

Table 1.2: Average invocation time performance (on a set of hosts). Note, the speed
of the time-optimal invocation (TO) is close to the function call speed (F) and is
more than three orders of magnitude faster than the protected invocation (sec and
msec).

We measured the range of mean request-reply communication overhead times
on and between several Unix workstations (including processor configurations with
Sun Sparc 2 & 20, DEC-Alpha 4x21064, SGI Indigo R4400 & 2xR8000, Intel
Pentium 90 & 2x160 MHz). The recorded time ranges are average real times taken
with various processor types and load levels.

Table 1.2 shows, that the speed of the time-optimal invocation (TO) is close
to the function call speed (F) and more than three orders of magnitude faster than
the protected invocation (P). Those interprocess communications within one ma-
chine (P) and across the internet (P) account for a latency in the order of
three milliseconds for the entire round-trip. Using the textual SO request method
strDispatch (S) requires for the plain string conversion service a fraction of
a millisecond, which significantly increases with the number of converted values
(S , here in both directions). The swiftness of the IPC-stup for writing to a
shared memory segment (cyclic multi-buffer, see Sec. 1.7.2) is measured with a
few 10 microseconds. Here a non-checking, accelerated execution alternative ex-
ists, which reduces the IPC service call time to about 65%.

J. Walter and H. Ritter “SORMA”

28 A Software Architecture: SORMA

1.8 SCOTT : Service COmmunicaTion Tools

As pointed out before, strong interactive support is one important goal to enhance
over-all software reuse efficiency by reducing the effort spend to figure out the
component. It is associated with:

interactive testing of the entire interface

easy configuration (tuning) of limits and parameters etc.

interoperation of remote objects (“white hardware boxes”)

inspection of configuration and properties

error reports and warning reports (readable)

ease of use – invites to re-use

– non-cryptic, semantic messaging
– readability of results
– offering also high level of abstraction
– on-line help (implemented by each service class)

As Service COmmunicaTion Tools (SCOTT) two readily configured executables
“scott” and “scottwish” are available.

1.8.1 “scott” : the Inspector

“scott” is the standard SORMA “inspector”, already indicated in Fig. 1.1. This
command-line interface is similar to a shell (standard input) and allows to send
textual service object request to the SORM. This is just enough to

interoperate all remote daemons and their (possible) service objects in the
SORMA architecture;

scripting (e.g., for extended test sequences, little applications)

For convenience, “scott” offers shell features, like line editing, history saving and
matching, command line completion, etc.

1.8.2 “scottwish”

The SORMA textual SO request technique invites to use services by scripts called
from buttons, sliders etc. The Tcl/Tk package facilitates graphical user interfaces
(GUI) in a very simple way. As shown in Fig. 1.1 a short Tk-script calling the ready
“scottwish” will be enough. Fig. 1.8.2 shows an example where mouse clicks on
widgets interoperate an active stereo camera head and its lenses.

SFB360–TR–96–3

1.8 SCOTT : Service COmmunicaTion Tools 29

Figure 1.11: Example of
a graphical user interface
(GUI), produced by the
“scottwish” and a Tk script
(Kubisch 1995).
(Left:) The active stereo
camera head offers 4 DOF for
head gaze control (neck pan,
tilt, and vergence) plus 3 DOF
in each motor lens system
(focus, aperture, zoom), in-
terfaced by SORMA services,
served by a single daemon
process (type (ii) configu-
ration in Fig. 1.1). Thus the
actice vision head can be
interoperated by mouse clicks
and drags (using the GUI
above), by the command-line
inspector “scott” , or directly
by any application.

J. Walter and H. Ritter “SORMA”

30 A Software Architecture: SORMA

1.9 SORMA – Bridges

1.9.1 SORMA – NST Interactions and Graphical Programming

Other systems may benefit from the SORMA features by bridges. Since the SORMA
development started, NST was extended to support strings and was further supple-
mented by NEO. NEO is a graphical interface, which allows to visually program
applications in an icon drag-and-drop fashion. The data flow is specified by line
drawing with the mouse. By NEO's visual programming language NST circuits
with unit elements can be drawn, wrapped-up in container units, which subse-
quently become themself regular, connectable NST unit objects. Starting from
a large number of powerful neural network, computing, and graphical animation
units increasingly complex modules can be arranged and interactively tested and
used.

By means of a general SORMA-by-NST unit all network accesible SORMA
services (deamons) are usable (e.g. sensors systems) and can be included and
graphically wired up in NST/NEO circuits.

Vice versa, in a second step, any of the avilable or created NST units can be
packaged and exported to the network via a NST-by-SORMA daemon. In this
way the high-performance computing facilities can be easily integrated to large
applications. Sec. 2.1.3 will give an example on using a PSOM network service as
a central, shared SORMA resource.

1.9.2 Exporting SORMA services via the DACS Bridges

G. Fink and N. Jungclaus (1995) developed the “Distributed Applications Commu-
nication System” (“DACS”), which offers a set of advanced socket based inter-
process/inter-application communication protocols. Building on the message pass-
ing paradigm, DACS offers processes bi-directional communication procedures
like synchronous and asynchronous rpc, as well as by demand streams. Demand
streams are a new interesting method and allow processes to subscribe to the re-
sults of other processes. Each subscribed process receives his private result copy
after the newly produced data structure is available. The intention is to let several
processors contribute their best by parallel working on a stream of e.g. sensory data
(like speech data, see Fink et al. 1996).

Data structures are dynamically packed and unpacked by NDR (Network Data
Representation) library functions. This allows, in contrast to static, pre-compiled
XDR (see Glossary) – standard network rpc library routines (Bloomer 1992) con-
version routines, to pack/unpack arbitrary complex structures in a lisp-like, type
tagged list representation.

Similar to the PVM (Parallel Virtual Machine) concept, DACS employs a (for

SFB360–TR–96–3

1.10 SORMA Features 31

the entire network) central communication daemon for dynamic maintenance of
the communication structure. This is a trade-off between centralized control al-
lowing immediate communication re-configuration – and the extra communication
overhead, which becomes substantial in applications with high-communication fre-
quency and/or with real-time constraints4.

Since DACS employs advanced, but not (yet) fully portable threads (see Sec. 1.7),
SORMA has difficulties to interoperate DACS applications. On the other way
around, the bridge is very simple – services in SORMA are fully usable, also via
DACS.

1.10 SORMA Features

The Service Object Request Management Architecture, SORMA is a distributed
object oriented programming approach implementing an “object bus”, suitable to
serve the special needs occuring in the robotics domain. It emphasizes:

OO “White boxes” for hardware – offer a high level of abstraction, without
loosing access to internal affairs (in contrast to a black box).

Time-optimal invocation – allows full real-time efficiency required in the
domain of robotics.

Protected invocation – allows interprocess service requests from process to
process also across the network. No server faults are transmitted to the caller
in an uncontrollable way.

SO migration – both invocation schemes are fully exchangable (same syn-
tax).

Interoperability of distributed objects – all operations at local service are
fully network transparent. The proxy mechanism mirrors also possibly gen-
erated event messages.

Dynamic service object instantiation by name – service objects are created
(by class name) and specialized by “flavor recipe”, which is done by pars-
ing a list of state transition requests. The same parsing mechanism is later
available, e.g. for interactive tuning.

4Fink et al. (1995) report 3.9 msec for the best DACS communicated case where the caller, the
callee, and the central daemon are running as three processes on the same host. Cummunication
takes 9.1 msec for the worst case, when three different hosts are involved. This compares to the
much wider SORMA span of 0.25 sec – 4.0 msec, see Sec. 1.7.3 (Tab. reftab:SormaTimes, p. 27).

J. Walter and H. Ritter “SORMA”

32 A Software Architecture: SORMA

Robustness – protected invocation and SORMA self-managed re-connectivity
to newly started daemons. Resume capabilities for complex state machines
(e.g. robot) is facilitated by coding re-configuration information in flavor
names.

Easy-to-configure (both, on object and SORMA layer) – dynamically at run-
time and persistent by editing a dictionary file.

Easy-to-use: service naming and SCOTT interactive support – immediate
test-suite, scripting, and GUI; Requesting service by names hides all config-
uration details behind semantic wording.

Easy-to-fix – support extensive and detailed clear-text error and warning
messaging, for rapid error spotting (also remote) - also giving non-experts
a chance.

Easy-to-learn – the small primary interface (“EXEC/CTRL/DBX”) in con-
junction with on-line help and readable commented dictionary entries make
it easy to explore new service classes and their behavior (plug-and-play)

Easy-to-share – SORMA services are simple to share via daemon configura-
tion, which is an incentive for better interface designs by early beta-testing.

Concurrency support – shared hardware service by multiple users (private
flavor states) and concurrent application development through robustness.

SFB360–TR–96–3

Chapter 2

Hybrid Integration Examples

The previous chapter explained the SORMA concept, this part reports on two de-
manding integration examples:

the Bielefeld Checkers player demonstrates how a complex task can be suc-
cessfully be composed in a distributed, team development, computing and
robotics architecture;

the second application emphasizes real-time capabilities. A rapid learning
network (Parameterized Self-Organizing Map, PSOM) is used for 3 D vi-
sual target tracking in combination with force following and interactive user
commands;

2.1 Wiring Service Objects to Play Checkers

The first example is an autonomous checkers player, developed together with a
group of students. The initial idea was to exercise all major robot-vision lab com-
ponents in a complex real-time task including human interaction. The decision to
play the board game of checkers, less driven by the comparable predecessor from
Rochester (see discussion), but rather by the incidental availability of a well work-
ing symbolic game algorithm.

Particularly in a research environment, the very useful strategy “Divide and
Conquer” is prominent. But when complex task should be performed in reality
and should be repeatable, a further requirement gains importance: all “conquered”
parts must work harmonically and reliably together (a challenge, which is more
standard in the industrial domain).

Thus, the task of dividing the complex real-time task into manageable, parallel
programmable software objects is coupled with the problem of making the phase
of joining the parts to a phase of excitement and not of nightmares. The checkers

J. Walter and H. Ritter “SORMA”

34 Hybrid Integration Examples

player project was a major impetus for the development of SORMA far beyond the
purpose of a communication library which conveniently wraps low-level library
calls. After all, SORMA proved its value for developing easy-to-test, easy-to-
integrate, network-transparent, sustainable code in a group of programmers with
very different programming experience.

2.1.1 Why Checkers?

The task of an autonomous robot-vision system, which is able to play checkers
with humans involves quite a number of fundamental issues in the field of sensor
based robotics. Among them are:

A hybrid system concept combining components with neural networks, arti-
ficial intelligence, and conventional engineering solutions;

Perception action loops, closed on several levels.

It comprises:

an AI task planning level for analyzing the game situation, strategic move
planning, task decomposition and control;

image acquisition, processing, and high-level interpretation;

semi-autonomous task execution and validation by the robot arm-hand sys-
tem with sensor integration for guarded motion and visual servoing;

man - machine interaction in two communication situations: (i) the game
played by the pair human player system and (ii) the system opera-
tor interaction concerning game supervision, safety, and error and exception
signaling;

robust fault-tolerant communication between distributed software and with
complex hardware.

2.1.2 The General Plot

Fig. 2.1 shows a picture of the scene: a checkers board with wooden, colored tokens
(red and yellow) is placed somewhere on the table, the Puma robot behind. The
human player is asked to choose a valid move, while the board is surveyed by
the end-effector camera from an upper position. As soon as the human move is
considered final (non-changing new board configuration) it is validated and either
accepted or rejected with an appropriate spoken voice remark. Once the human

SFB360–TR–96–3

2.1 Wiring Service Objects to Play Checkers 35

Figure 2.1: The checkers game set up with the board somewhere on the table and the
Puma robot playing against the human player.

J. Walter and H. Ritter “SORMA”

36 Hybrid Integration Examples

move is legal, a response is planned by a symbolic game playing algorithm. Since
the international rules of checkers are obeyed, the response may be a simple move,
a capture, multiple captures, a crowning, or an extended long-move (privilege of
the queen). The latter ones must be decomposed in a sequence of sub-tasks (single
move primitives) before the robot-vision system is engaged to execute the response.
The loop goes on until the game is over, or the human decides to stop or restart a
new game.

2.1.3 Divide, Conquer, and Connect

Following the idea of protected communication (see Sec. 1.4), we distributed the
task on several daemons processes as sketched in Fig. 2.2. Their names indicate
the main purposes, the arrows display the directions of occurring service (SO)
request.1

The “Player”

The player process is the master of all the other daemons. Therefore it is re-
sponsible for following the plot described above. Its particular tasks are the fol-
lowing: (i) it comprises the artificial intelligence component able to analyze the
symbolic game situation, validate human moves and plans its reaction. This part
is programmed in the C language for quickly generating and evaluating trees of
legal moves scenarios. The result is a valid move, possibly including an action
sequence, e.g., additionally removing captured stones to the heap. (ii) The sub-
service calls are supervised, error messaged are evaluated for autonomous reaction
or proper telling the user or operator about the exception (this part is written in
the Tcl language). (iii) A Tcl/Tk graphical user interface welcomes the user and
offers several extra configuration options (mostly for developing purpose, e.g., a
symbolic board visualization for comparing internal representation, or dry runs in
simulator mode; acoustic verbosity levels, see below.)

Notifying (Non-Localized) Humans: the “Speaker” Daemon

When the human interacts with a machine, important messages should be presented
in such a way, that the human's attention is drawn. Usually, the user is sitting in
front of some display, where the notification schemes ranges from a beep signal, a
textual message in a terminal to a (sticky foreground) pop-up window which must

1The checkers application would not exist in the presented form, without the important con-
tributions of Christof Dücker (robot manipulator, vision), Gunther Heidemann (vision 2nd), Hart-
mut Holzgraefe (robot hand), Michael Krause (player, GUI), Dirk Selle (game), Bernd Sieker
(player), and Patrick Ziemeck (vision 1st).

SFB360–TR–96–3

2.1 Wiring Service Objects to Play Checkers 37

be confirmed before it disappears again. But this is unreliable when the human
is far from the relevant screen, for example he is staying at the table expecting
something to happen. The natural solution is to communicate it acoustically.

The “speaker” daemon offers a central network service to speak out recorded
comments, alert messages (e.g., “power-up the robot”) and message sequences
(e.g., “. . . at” “D” “4”) in a spoken form (in this application a single speaker, placed
at the robot “talks”, fed by SGI workstation.)

This way any applications can profitably use the named SOR without worrying
about the incompatibilities of different computer brands. Writing applications with
voice messaging become portable across the computer platforms by a single func-
tion call, like 'strDispatch("FORK.sound EXEC alertPowerUp.snd");'
(see also Fig. 1.4). The name indicates the general class of network-transparent,
asynchronous, parallel service calls. Additionally, the number of non-blocking
execution (fork-calls) of parallel processes can be limited, here in order to avoid
scrambled messages.

To complement the spoken “what” message by demonstrated “where” infor-
mation in the workspace, the laser pointer device in the hand can be engaged to
point at the spot and blink. A separate laser service class takes care of these needs
(in the checkers example, this method is activated in case a grasped stone got lost,
which is so rare that the “laser” daemon is not drawn in Fig. 2.2.)

Vision Robot

Hand

Speaker

Transform

Inspector Player

Figure 2.2: The Checker Players Architecture. The hierarchical client - server ar-
chitecture in the checkers player task with usually six Unix processes, distributed on three
computers. The arrows indicates the SORMA service call directions. The “Player” process
is the master of the daemons below. All relevant messages are back-propagated. Option-
ally, an standard SCOTT “Inspector” may monitor and call any of the daemon services –
during a running applications.

J. Walter and H. Ritter “SORMA”

38 Hybrid Integration Examples

The Central “Transform” Daemon

The Checkers scenario needs three different board representations: (i) abstract
board coordinates [A3=(1,3)] (ii) camera image coordinates [pixels], and (iii) robot
world coordinates [mm]. The transformation between these three coordinate sys-
tems depends on the actual board location on the table. This problem is analogous
to a auto-associative image completion task, which is described in Walter and
Ritter (1996a). Here we apply a neural network approach called Parameterized
Self-Organizing Map (PSOM), see Walter (1996) Based on the identification of
a pair of violet board markers, the correct transformation can be adapted. The
associative completion feature of the PSOM is utilized to perform the required co-
ordinate transformations. The PSOM algorithm is implemented a NST unit type,
wrapped as SORMA service class, and configured here as a separate “transform”
daemon (see Sec. 1.1 and Sec. 1.9.1). This allows to send transformation requests
to a central resource, here a single neural network module.

The second PSOM task of the “transform” daemon is to perform visual Ja-
cobian matrix operations in order to check and correct the robot position before
grasping objects (pre-share postion, see Sec. 2.1.4).

High-level Perception: The “Vision” Daemon

The “vision” daemon serves as a specialized “sensor agent” for high-level image
interpretations. Based on the input of the end-effector color camera, three services
are used: (i) findBrdMarker find the board marker pair (called once at start-up
and when the board seems relocated). (ii) getBrdSit get the current symbolic
board situation in abstract board coordinates together with a detailed estimation of
a confidence level for each field. (iii) Before grasping, the relative position be-
tween the object and the end-effector is determined by the getDisk service object,
in order to correct the pre-share postion, see Sec. 2.1.4.

The first version of the vision daemon ran on the Androx system and has re-
cently been replaced by a (one order of magnitude) faster version working on the
Datacube (see Walter and Ritter 1996b). In both cases a look-up-table based color
segmentation, followed by a connectivity analysis is performed. A competitive
winner-takes-all RBF (radial basis function) approach assigns and certifies the
color specific blobs (center and size) to the image field locations previously ob-
tained from the “transform” server. All other required parameters can be tuned
interactively and stored in the SORMA dictionary (the larger color look-up tables
are stored as name references to extra files).

The Datacube system allows extremely rapid color segmentation by coding the
color information in a representation of the HSV space (hue, saturation, and value;
6+5+5=16bit) and allowing direct identification in a 64 k look-up table. It cap-

SFB360–TR–96–3

2.1 Wiring Service Objects to Play Checkers 39

tures the training result of a RBF network supplied with hand-labeled images of
the checkers board. A competitive clustering algorithm allocates the radial basis
functions in the HSV space. For this application a single Heavyside function turned
out sufficient. This reveals a great potential for more refined learning networks to
enlarge and adapt the tolerance range in ambient light conditions. This implemen-
tation is a good example for compiling the essence of a learning method into an
extremely rapid, specialized hardware.

The current SO interface levels consist of highly-specialized checkers calls,
the lower level building blocks are not accessible yet. This is quite perfect in
the checkers player application but reveals that the level of interfaces should offer
various entry levels in order to be better re-usable in other contexts. An example
of a more versatile multi-level access is shown in the functionalities of the robot
server.

Figure 2.3: Images obtained from
the end-effector camera are the basis
for correction movements to the de-
sired preshape grasp position. The
PSOM network is applied to im-
plements a rapid learning procedure
for the non-linear, visual Jacobian
transformation.

Action: The “Robot” Daemon

The “robot” daemon offers a variety of parameterized services, including the fol-
lowing: (i) The basic service pino (derived from the robot's nickname “pinoc-
chio”) offers an interface to fundamental and structural parameters (e.g., control
task interval, enabling force torque sensor reading and gravity compensation, en-
able writing state records to shared memory buffers, and activating other service
control tasks; for a fuller account see Dücker 1995.)

(ii) The mvpos service class offers position controlled motion commands.
Those can be absolute positions, named or explicit, or relative to a reference pose,
given in various representations (joint angles, generalized position, relative trans-
formation matrices etc.) and with configurable speed and interpolation modes
(joint or Cartesian). The service can listen to relative displacement commands
passed by a specific shared memory segment (see Sec. 2.2). Furthermore, robot
status information can be accessed.

J. Walter and H. Ritter “SORMA”

40 Hybrid Integration Examples

(iii) The wspc class defines services to guard current motion, see (Wal-
ter and Ritter 1996b) These watchdog functions define sensory pattern match-
ers. E.g., currently, geometry (workspace=“wspc”) and force patterns are con-
figurable. The configuration “recipes” can be collected and stored in the dictionary
with conveniently retrievable names (e.g., “wspc.fragile”, ”wspc.noTable”). Note,
that any particular guard service after dynamical instantiation can be interactively
re-configured. Activation is done by the higher level motion commands like the
following:

(iv) push and carry are complex movement primitives, which integrate sev-
eral action and perception components as sub-services. push includes guarded
approach to, contact with, and compliant pushing of an object with one straight-
ened finger. All control law parameters, sub-service names etc. are hidden in the
dictionary, only initial and final transfer positions are arguments to the EXEC call.
For the checkers application the carry is central for moving the checkers tokens
(single or queen stacks), facilitating capture moves, see Sec. 2.1.4

The “Hand” Daemon

The manus service, here wrapped as a stand-alone daemon on the host “druide”(“manus”
daemon), provides interface to the TUM-hand. Absolute and relative motions be-
come interactively available as (i) per joint, (ii) per finger or as (iii) coordinated
fingertip motions. Hand postures can be called by names and (iv) trajectory se-
quences can be directly executed. Three-finger (tripod) grasp and release opera-
tions include automatic sensor verification and additional (configurable) signaling.
E.g. if the hand is requested to grasp the object and the fingers cannot find the ex-
pected counter forces (in place), the manus service may directly invoke the voice
service to notify about this problem. It might be interesting to note that this way
the desired degree of user-friendliness and autonomy can be dynamically config-
ured. All (user-unfriendly) low-level “manus” internal control law parameters etc.,
located on the subordinated VME controller (see Walter and Ritter 1996b), are in-
teractively accessible (read+write), but normally hidden.

2.1.4 High-level Task-Directed Action Services

As pointed out by Brunner et al. (1995)a (1995)b, the integration of sensor-based
task primitives (“elemental moves”,“EM”) into a hierarchical framework is an im-
portant step to reach a move generalized planning and assembly plan generation.
The transfer of a stone seems to be a good example to explain how task-directed
programming can be approached within the SORMA concept.

The carry service performs a multi-sensor based pick-and-place operation,
provided by the “robot” daemon. As Fig. 2.4 illustrates, the composed carry

SFB360–TR–96–3

2.1 Wiring Service Objects to Play Checkers 41

service splits into action sub-tasks involving the “hand” , the “transform” , the “vi-
sion” , and in exception cases, the “speaker” and “laser” daemons. The carry
service is called with the initial and final target location argument in abstract board
coordinates (3 D, including the height, for manipulating space saving stone heaps).
The “transform” daemon (+T) converts them into the required robot world coor-
dinates. The robot arm moves into an approach position above the stone. At the
same time, the fingers of the hand are reshaped in a pose suitable to the inter-stone
distance, which is concurrently handled by the manus service.

Preshape Position
by Vision

Approach by
Distance and Force Deproach

Grasp Part

Free Motion with
Concurrent Hand Preshaping

Free Motion

Approach by
Distance and Force Deproach

Release Part

+V,+T

+L,+S

+T,+H

+T

+H +H

Signal Specific Fault

Figure 2.4: The robot “carry” task for relocating an object, commanded in symbolic
coordinates. The “+”-marked initials indicate the sub-services requested for performing the
sub-goals (Transform, Hand, Vision, Laser, and Speaker daemon). The arrows illustrate
the state transitions controlled by sub-task specific conditions and sensory feedback.

In the next step (Preshape-Position-by-Vision), the position above the stone is
verified and corrected using one image from the end-effector (see Fig. 2.1.3). The
image acquisition and interpretation is encapsulated in the “vision” (+V) service
getDisk and its stone center information converted to a correction of the horizontal
robot position, again by a suitable PSOM call to the “transform” (+T) daemon.

The approach speed in the vicinity of the grasped object is configured slower
than the free space motion and is additionally guarded by continuous force check-
ing. Now, the object gets embraced by a symmetric tripod grasp of the hand, lifted
(deproach), and transferred (arch shaped path) to the next approach position. The

J. Walter and H. Ritter “SORMA”

42 Hybrid Integration Examples

sub-task for approaching and deproaching are re-used to carefully place and release
the stone before moving back to the next (park or task) position. The visual and
the force sensor are used to verify the expected task execution. If inconsistencies
are detected, they will be signaled back to the caller (the player) and additionally
(if desired) directly to the human via the “speaker” and “laser” service (+S,+L)
as described above.

Figure 2.5: Free Motion
transfer phase of the ob-
ject.

2.1.5 Discussion

One of the main advantage of SORMA is the interactive access to all relevant
configuration parameters, but at the same time hiding them behind a single com-
pact call. For example the complete carry service call is definition such, that only
the execution relevant arguments, initial and final position, are given. Modified
instances are useful to gain special non-default configuration. The following ex-
ample demonstrates how such a second instance is dynamically defined, created,
and used with one of the required task specification parameters changed.
dict CTRL -add carry.slow '-SUBST carry -transferSpeed 0.2'

carry.slow EXEC FMSG 6 3 4 0 4 5 0

carry EXEC FMSG 6 4 5 0 3 4 0

(i) The first line instructs the dictionary to add a new entry with the name carry.slow.
(ii) With the second line, a new service object, named carry.slow, is dynamically
instantiated with the default parameterization list of carry, plus one extra over-
writing speed value, as stored now in the dictionary. The carry operation is then
executed (EXEC) slowly from field C4 to D5 and (iii) back in nominal transfer
speed. This shows that alternatively to appending parameters to arguments lists,
the modified services can reflect their execution “behavior” in an intuitive, user-
friendly name. Both service flavors are then readily available, details are present
but hidden. Note that the first line can be omitted after inserting one permanent
line in the primary dictionary file.

SFB360–TR–96–3

2.1 Wiring Service Objects to Play Checkers 43

This code can be directly typed in the on-line interpreter mode of the “robot”
daemon or in any on-line inspector, calling the serving “robot” daemon remotely.
In the latter case, the service names must get the appropriate remote address exten-
sion (e.g., carry@druide:0x14, or dictionary abbreviated, carry@pinoServ,
or dictionary default address CARRY, see Sec. 1.4.3). The same lines can be called
one-to-one as text oriented strDispatch() calls in any client program (C and
Tcl/Tk script), or identically by using the vectorial interface directly (here 6 floats
“FMSG 6...”, see Fig. 1.4).

Note, that the point is not that every parameter should find external access, but
that SORMA parsing structure and support makes is particularly easy to create and
maintain interactive access to them. This way, all parameters found in the initial
test phase sustain this access, even when used as sub-sub-service, throughout the
service's lifetime.

Sub-service calls are configurable by the sub-services level or a complete swap
by exchange of the name (e.g., wspc versus wspc.noTable). This is an efficient
environment to tune and program controllers, sensory configurations, and condi-
tional parameter sets in an object-oriented manner.

We have developed a robust system to play the checkers game in a distributed
and hierarchical client - server architecture. SORMA supports the system robust-
ness in a number of ways:

Sensor based task qualification after execution and

several layers of closed perception–action loops add to a system, able to cope
with a number of exceptions in an intelligent task-oriented (situated) manner,
with different levels of autonomy (non, semi, full autonomous reaction).

The system supports systematic error and warning message propagation (code
and text) back to the original caller (network transparent). A qualified mes-
sage is the best a service can offer, in case the service object cannot react
autonomously itself upon the exception. Clear text messages facilitate the
robust usage of services by non-expert users.

The system services communication structure offers rapid local and (identi-
cal) protected remote service calls.

The system is able to cope with failed and restarted daemons. This feature is
of greatest value for concurrent application building in a team of program-
mers. It is much less important as soon as the entire complex product is
mature and performs stably.

Furthermore, rapid learning by demonstration finds a good example in the
checkers scenario. In particular the rapid construction of the required mapping

J. Walter and H. Ritter “SORMA”

44 Hybrid Integration Examples

from misaligned objects to correcting robot movement for reaching the correct
hand preshape position. Based on a set of only 4 training examples the sensor-
action mapping is learned. During the training phase the robot is located on a
horizontal grid, centered at the correct nominal grasping pose. The complete
non-linear mapping is learned by a PSOM network. This implies the knowledge
of the Jacobian matrix and its inverse over the learning domain and facilitates a
precise one-step correcting move, which is an advantage to approaches which con-
struct a local linear mapping at one single point. E.g. (Castano and Hutchinson
1994) and (Brunner et al. 1994) determine the inverse sensor Jacobian matrix also
by a number of test-moves of the robot arm. By a overall comparable training
procedure the PSOM approach offers to learn the non-linear approximation task
accurately over an extended domain, in contrast to linearized approximation in a
single point (Jacobian matrix).

How does the system compares to the Rochester Checkers Player? Marsh et al.
(1992) aimed at demonstrating the advantage of the animate vision paradigm by
decomposing the problem in function modules. These are programmed in different
programming models and run on a 32-node BBN Butterfly Plus parallel processor.
The developed operating system Psyche allows various interprocess communica-
tion and synchronization schemes between the Motorola 68020 processor nodes.
Psyche and SORMA share the idea of software modules with a set of interface
functions to grant procedural access to the code and data encapsulation by the
module. Furthermore, they share the idea of offering time optimized and safety
optimized protected function calls to other modules. They mostly differ in the
level of communication, while SORMA can cope with various general purpose
Unix operating systems, Psyche is itself an multi-processor operating system for a
VME-based shared memory machine. The outside world communication is chan-
neled via a Sun workstation and a serial port on each node. The VME-bus hosts in
parallel a Datacube MaxVideo 20 system, see also (Walter and Ritter 1996b).
The Rochester checkers player engages a VAL controlled Puma 761 robot, carrying
a camera platform and a passively compliant checkers-pushing tool.

In spite of the parallel implementation of the board image interpretation, the
checkers player, and the move planner, the Rochester system did also follow the
sequential nature of the game. Due to the interference of the image analysis and
robot action , caused by the camera-in-hand configuration, the high-level proce-
dural sequence perception-cognition-action-perception was not left. Therefore,
the hierarchical call structure in Fig. 2.2 seems an equivalently suitable solution.
Here, concurrent action executions are reserved for particularly suitable cases (see
Fig. 2.4).

The advantage is the gain in a clear error propagation structure, which enor-
mously simplifies error spotting in a complex, distributed application. Note, this

SFB360–TR–96–3

2.2 Visual and Force Tracker 45

is a development tool advantage, which naturally becomes invisible as soon as the
application matures to playback performance.

In the next section, we will present an application aiming at the contrary, a fast
concurrent action – perception coupling.

2.2 Visual and Force Tracker

2.2.1 Motivation

The purpose of the tracker application is twofold: (i) to test the usefulness of the
PSOM approach and the SORMA concept in a demanding real-time application;
(ii) The checkers application brought up the question of increasing the human -
machine interaction dynamics and autonomy. What will happen, if the human
fools the robot system and takes away the stone? (The checkers system will expose
the unexpected fault loudly.) Can we make the robot following the human hand
teasing the robot with the desired object? Can we make the robot pick a part from
a non-resting, moving human hand? This is a basis requirement for, and therefore
a step towards a helping “third (robot) hand”, which is able to dynamically take-
over object or tools presented by a human, able to cope with unknown, drifting
handshake positions.

The standard passive tracking problem is concerned about locating the image
of a moving object, seen by a stationary camera system, e.g., (Allen et al. 1993).
Active tracking (animate vision paradigm, see Ballard 1991) aims at keeping the
target centered in the image of an active camera. It is more demanding, since,
additional to the target, the ego-motion of the system effects the seen camera image.
Delays in sensory processing time become relevant, and can be compensated by
predictive control (see below).

Active vision approaches divide in two main categories: (i) gaze direction
control was studied for one (Murray and Basu 1994) (2 D, azimuth and eleva-
tion angle) or two stationary cameras (Coombs and Brown 1993; Daniilidis et al.
1995).Those active camera tracking systems are interesting, e.g, as automatic cam-
eraman in surveillance, security, and video-telephone systems.

(ii) Here, we are interested in moving the camera attached at the robot hand
in full 3 D space. The idea of an active vision-in-hand configuration was stud-
ied before, mostly for static target objects, e.g., by Gengenbach (1994), van der
Smagt (1995), and Brunner, Arbter, Hirzinger, and Koeppe (1995) and in case of
2 D moving targets by Papanikolopoulos, Khosla, and Kanade (1993). A zero-
gravity 3 D ballistic tracker was successfully demonstrated by the ROTEX experi-
ment (Hirzinger et al. 1994).

Additionally, we want to combine (i) the visual guiding by an object seen by

J. Walter and H. Ritter “SORMA”

46 Hybrid Integration Examples

Figure 2.6: The camera-in-hand end-effector configuration. Between the arm and the hy-
draulic hand, the cylinder shaped device can measure the currently exerted (6 D) force and
torque values. The three finger modules are mounted here symmetrically at the 12 sided
regular prism base. On the left side, the color video camera looks at the tracked object
from an end-effector fixed position.

the end-effector camera with the idea of force guiding the robot hand manually in
two ways: (ii) directly at the robot hand and (iii) remotely, by teleoperating the
robot with the 3 D SpaceMouse. In both cases, the actual forces, exerted by the
human are measured and converted to modify its current position.

This form of integrated force control solves at the same time the problem of
possible collisions in a very graceful and practical way. In those cases, the visually
commanded input are counterbalanced by the reactive forces of the environment.
The result is a form of “virtual spring” located at the visually determined target
position, which we find an attractive compromise.

In spite of this graceful reaction, care must be taken to discriminate the desired
target from undesired artifacts, in order to avoid unintentional robot behavior. As
redundant and independent safety layers, we implemented a (i) force overload
measuring in the wrist (separate software layer, stop motion and exit process) and
(ii) we armed the experimentation table with force sensors at the legs (FSR sensors,
independent hardware circuitry for powering off the Puma).

2.2.2 The Tracking Task

To simplify the vision pre-processing stage in the first experiments, we choose a
monocular, model-based approach to gain the 3 D target position information. In

SFB360–TR–96–3

2.2 Visual and Force Tracker 47

particular, we mounted a ping-pong ball at a stick and equipped it with an central
illumination. The task is to follow the object in a nominal relative position, which
is suitable for a later step, the interception in an object-depend grasp pose.

The general scheme of the tracking application in shown in Fig. 2.7. It com-
prises several main components:

 Camera

on
Robot

 Image

Analysis
2D

 PSOM

Target
Estimate
relative 3D

 Trajectory

Correction
time optimal

 Target

Estimate
absolute

 User

Input
3D Mouse

 Force

Control
Law

Robot
+

Environment +

Force Wrist Sensing

datacube & SUN argus SUN druide

Target

End-effector Position

Figure 2.7: Real-time tracking with three inputs: (i) predictive visual servoing with
asynchronous image preprocessing and reconstruction of the relative nominal target posi-
tion with a PSOM; (ii) manually guiding the robot using the wrist force-torque sensor;
(iii) teleoperation by the 3 D SpaceMouse. The task is distributed between the vision host
“argus” and the robot host “druide”(see Walter and Ritter 1996b). The interprocess com-
munication uses several shared memory SORMA service objects (Sec. 1.7.2; indicated by
little circular ports to the block icons).

2.2.3 2 D Image Analysis

The wide-angle camera is fixated at the robot end-effector (see Fig. 2.6) and detects
the ball, when visible in the view field. While emitting light, the object is easy to
detect by its relative brightness to the background. The Datacube system, hosted
by the “argus” workstation, grabs a monochrome image of size 500 500 pixels
and performs a binary threshold operation, followed by a connectivity analysis.

The connectivity analysis is a very convenient library call, which generates
a tree of connected pixel areas (blobs) and enclosed holes. The advantage is a
high-level object verification for the price of longer processing time, dependent
on the found blobs structures. With the given set-up, finding the largest blob is
sufficient to determine the centroid of the binarized ball in the image, as well as
the pixel area, the radius and eccentricity of the best fitting ellipsis. Later on the
blob size parameters give input to the relative depth estimation (by PSOM), which
makes them a safety relevant information. Therefore, the values are matched with

J. Walter and H. Ritter “SORMA”

48 Hybrid Integration Examples

expectation patterns, in order to avoid misinterpretation of artifacts. We verify, e.g.,
that the object is round (eccentricity), its size is within a suitable range, and last
not least, the size estimation is not fouled by a blob clipped at the image margins.

This image analysis process is running continuously on the host “argus” and
communicates its (raw) results via a SORMA IPC snapshot buffer (cyclic shared
memory, see Sec. 1.7.2). A second service object instance facilitates asynchronous
reception of preprocessing parameters, which can be interactively tuned by a con-
venient GUI interface.

2.2.4 Learning 3 D relative Target Estimation

After validating the 2 D image parameters, the learned 3 D model of the target
object is used to gain the Cartesian distance to the desired object pose in robot
tool coordinates. Here, the binarized image centroid, area and mean radius are
employed for this reconstruction, which is draws on the perspective distortion of
the camera.

As shown in (Walter 1996), a PSOM can favorably learn this transformation by
a small set of training examples. The target is fixated, and watched by the robot-
vision system from a 3 3 3 grid of position around the desired nominal pose.
By recording the relative robot commands together with the image preprocessing
results, the camera mapping is learned. This implies learning of the entire model
influenced by the target shape and nominal pose parameters, as well as the cam-
era parameters, thus as focal length, relative position and orientation to the robot
coordinates.

The PSOM network is used as SORMA service object module within a pure
client process. This facilitates the access of shared memory IPC communication
modules even across machine boundaries. Its input is read from a segment shared
with the image processing task and the output, the relative target estimation in
world coordinate, is transfered to a standard service on the other host “druide”.
Time lag measurement are discussed below.

2.2.5 Sensor processing times

Since both, the target and the robot are moving in space, the relative target infor-
mation must be related to the time when sensory information was gained. As soon
as a new relative target estimation is accessible at the robot control task, the visual
sensor information has a substantial and varying age , as illustrated in Fig. 2.8.
The processing times depends primarily on the number and sizes of found image
blobs (ms) meanwhile several robot control cycles are producing robot
trajectory set-points and may move significantly.

SFB360–TR–96–3

2.2 Visual and Force Tracker 49

Image Image Image

Target
estimate

Image

Target
estimate

Target
estimate Robot

Control
Cycles

τ τ τ

Image
Grabbing

and
Analysis

time

Figure 2.8: Asynchronous camera image grabbing and processing with varying duration
require a target state prediction, taking the sensor information age into account. Clock
differences on the time-stamping host computers are accounted for.

Therefore sensory information receives a time-stamp, when the image grabbing
is completed. When evaluating the time-stamp differences, here, the additional
problem of different wall clocks needs consideration (clock icons in Fig. 2.8). We
solve this problem by repeatedly estimating the clock difference during the data
transport from “argus” to “druide” and producing such a suitable time base cor-
rection.

2.2.6 Asynchronous Absolute Target Prediction

The asynchronous nature of the visual sensory input recommends a predictive tar-
get state model, because real robot arm control requires a method to operate at
fast servo rates (15 ms) - regardless of whether new information of object positions
are available. Furthermore, we have to take sensor noise and the pre-processing
delays into account. In a similar way as in (Allen et al. 1993) and (Daniilidis
et al. 1995) we employ a - - stationary linear Kalman filter (Bar-Shalom and
Fortmann 1988; Grewal and Andrews 1993), in order to estimate the state of the
target. In world coordinates we denote its position , velocity , and model the
target motion with constant acceleration in time , equal to step with duration

:
(2.1)

with (2.2)

Each time (step) a new visual sensor input is available, the state at the time
(step) the sensory input originates, is recursively estimated

from the previous target state and the absolute target position which

J. Walter and H. Ritter “SORMA”

50 Hybrid Integration Examples

is gained by using history records of previous robot positions feedbacks. Since
these are periodically written in a cyclic shared memory buffer (SORMA service,
see Sec. 1.7.2) the appropriate record can be determined from the measured sen-
sor time delay . The new estimation influences the target model
according to the Kalman gains.

diag (2.3)

The gain coefficient , and can be derived as a function of the target maneuver-
ing index. The maneuvering index describes the ratio of plant noise covariance
and measurement noise covariance. The higher the maneuvering index, the more
reactive the system response to visual input changes. Vice versa, a lower maneu-
vering index reflects a high confidence, that the target model describes a smooth
motion.

Additional to the Kalman filtering, the motion estimation and is damped for
low amplitude motions as an additional stabilization for a quasi-stationary hand-
held object.

2.2.7 Active and Reactive Force Input

The other two force input channels are pre-processed in a modular, isotropic way.
The 3 D vectorial inputs are low-pass filtered and radial squashed by a piecewise
linear function, comprising a null-radius filter, a scaling, and a clipping filter. The
parameters can be configured individually for the wrist force, and the 3 D mouse
input (SORMA dictionary). The latter input is fed with the help a separate Space-
Mouse daemon, which handles the serial line communication and writes the result
to a SORMA shared memory segment (max 60 Hz).

2.2.8 Trajectory Correction

As indicated in Fig. 2.7, the three commands are combined to modify the robots
current trajectory. To allow fast robot tracking motions, the remaining distance
to target interception must be divided into differential path segments per control
cycle such, that the robot reaches the target (stopping criteria) (i) with essentially
zero velocity (locking-on), and (ii) within minimal time. This goal conflict is
regulated by specifying speed and acceleration limits. We implemented a trajectory
generator with trapezoidal shaped velocity profiles, taking the maximum allowed
accelerations and de-accelerations into account. A similar approach was taken for
2 D simulations and described in detail in (van der Smagt 1995).

For the safe operation of the robot, care is taken to check sensory data integrity
(checksumming) and actuality. (i) The FTS input is synchronous, and (ii) the

SFB360–TR–96–3

2.2 Visual and Force Tracker 51

SpaceMouse will be called back by the daemon, if a non-zero input is not updated
within a certain time span.

(iii) The predictive nature of the visual motion commands requires a method
to deal with “target-disappeared” events. (These can occur when the robot gets
teased too wildly, and the configured accelerations do not allow the robot to keep
the object in full sight, or, the image analysis can not identify a unique and expected
object structure, e.g. due to occlusion). Here, we propose an expiring mechanism,
to perform a smooth stopping behavior of the current motion. After a configurable
expiration time without information update (typ. 0.5 s), the target state model is
adapted such, that the current motion decays exponentially.

2.2.9 Discussion

We have developed a system for tracking moving objects, relying on real-time
estimation of 3 D relative pose parameters from monocular images. The underlying
model including target object structure and the particular perspective geometry are
rapidly learned by a PSOM network. The system is able to cope with inherent
noise and inaccuracy of the visual sensor by applying parameterized filters that
smooth and predict the objects position seen by the camera mounted at the robot
hand. Additionally force compliant motions and remote control with a 3 D mouse
are integrated.

The robot control system is able to cope with the inherent mismatch between
the vision sampling rate and the servo update rate. However, the bandwidth of pri-
marily the visual input is limiting. It allows to specialize the filter parameterization
for rapid, saccade like movements, and alternatively, for slow and smooth pursuit
motions. This opens the interesting question, how to find suitable characteristics
to determine the humans intentional context. Then, we can employ the context-
oriented learning scheme (see Walter 1996) together with context optimized pa-
rameter sets.

The combination of direct force, vision and remote control shows a variety
of possible rapid human - robot system interactions. Further research should be
carried out to explore the feasibility of a more general semantics of man - machine
interfaces, integrating vision, touch (force) mediated gestures. Those “hands-on”
gestures could encode interaction-related inputs, e.g. for commanding task goals
and controlling modalities like machine (and service) behaviors.

J. Walter and H. Ritter “SORMA”

Chapter 3

Summary and Discussion

In the following we want to summarize and discuss the SORMA architecture. The
following major issues were particularly important for the design of SORMA:

3.1 Design Issues

support of team development by protected invocation of services;

shared network access to resources;

remote service access (protected invocation): full network transparency by a
proxy service objects mechanism;

time-optimal invocation for real-time tasks. Alternatively to the inter-process,
protected invocation, the very same compiled code can be used by fast intra-
process communication mechanism – with identical interfaces, which gives

support for service migration (symmetric intra-process & inter-process com-
munication, on local and remote network host)

improving robustness

– by strong support on exception message transport and handling (impor-
tant for network transparency)

– resume capabilities for complex state machines (e.g. robot) are facili-
tated by encoding detailed re-configuration information in service “fla-
vor” names;

– self-managed re-connection capabilities to newly started partner pro-
cesses (a particularly helpful feature during concurrent application de-
velopment in a team);

SFB360–TR–96–3

3.2 Language Mapping 53

support for the economic re-use of software (service modules) by:

– strong dynamic configuration and (run-time) re-configuration support;

– interactive testing, exploration (learning), and usage;

– built-in and on-line help (life-long);

– standard command-line inspector (SCOTT) with clear text interface to
all options;

– simple way to create customized GUIs (graphic user interfaces, with
Tcl/Tk cottwish);

– scripting capability (interpreted);

our heterogeneous Unix workstation environment requires 100% portability
and compatibility between various operating systems AIX, Alpha, Iris4d,
Irix5, Linux, NeXTstep, Solaris, SunSO (now – not in the future);

all robotics hardware devices are interfaced by specialized service object
instances, serving as special “device driver”. By configuring these as net-
work accessible “daemons”, one can easily constitute a multi-master field-
bus based on standard Unix workstations;

3.2 Language Mapping

As already mentioned before, the SORMA interface structure has many roots in
NST and is also programmed in the language C. This has is pros and cons: The C
compiler allows as much object orientation we want, but we loose automatic deep-
leveled object pointer handling and automatic multi-generation class inheritance.
This encourages to design more flat structures and save unnecessary operations.

From the object oriented programming (OOP) point of view, this is only the
half way to the tempting world of arbitrary complex, aggregated object designs.
This is somehow true, but doing this exercise without a C++ compiler, gives us a
better control on the time performance: (i) on a short time scale for time criti-
cal tasks SORMA encourages to use “run-time binding” upon CTRL commands
instead of the classical ways of “early binding” (fast, but static) or “late binding”
(flexible, but slower); (ii) on a longer time scale C++ repeatedly exhibited floating
language definitions, which results in unsatisfying design instabilities. Clearly, in
the long run it would be advantageous, to have a standard C++ (o.s.) language im-
plementation with enhanced compiler support for the OOP aspects of the SORMA
concept.

J. Walter and H. Ritter “SORMA”

54 Summary and Discussion

3.3 Interface

A key idea of SORMA is its compact SO interface design. It is the basis of an
extended and easy-to-use interactive support – conceptually as well as by tools. At
the same time it accomplishes this without impairing the real-time capabilities of
the service.

The IPC-sub service class is an excellent example on the advantages of splitting
the method dispatching in two levels (EXEC and CTRL method). It gives space
to an intelligent (self-checking) and convenient (clear text) object interface and a
second execution level parser, which can be designed as fast as desired.

Which types of parser mechanisms are used (for the EXEC and CTRL meth-
ods) depends on the design goals and the implementers preference. The goals
are usually mixtures involving ease-of-use, comfort, information hiding, fault-
tolerance, parser effort, execution time, etc. The implementation palette reaches
from: (i) no-parsing (fastest); (ii) case switch; (iii) loops with token matching
(template standard), and (iv) language parser (context-free grammar with bison).

Text Conversion turned out to be a very important ingredient for reducing com-
munication costs with SORMA (Walter and Ritter 1996c). It provides easy-to-
use, unrestricted interactive access to each SO interface. Separated by reserved
word tokens, the transport structure can be string converted in a bi-directional
way (excluding the unspecified “any” tuple). By this verbatim translation, interac-
tive exploration is quite more authentic as usual, ready-made test or demonstration
programs. Applicability and limits of a component can be investigated in a very
quick and efficient manner. The results can be 1:1 transfered to program code –
always with the option to chose between protected and time-optimal invocation.
Here, SORMA combines the advantages of interpreted interfaces (like Mathemat-
ica, Maple) and the benefit of real-time efficiency achieved by its SO-interface.

3.4 CORBA

When comparing SORMA with industrial distributed OOP approaches it appears
that the SO concept matches most goals and attributes characterizing a state-of-
the-art OOP infrastructure. In particular, CORBA is seen as todays most advanced
industrial standard of an infrastructure to distribute and connect objects across net-
works, applications, languages, tools and operating systems. CORBA stands for
“Common Object Request Broker Architecture” and is an ongoing development
process of the Object Management Group (OGM), comprising about 400 compa-
nies, including Sun, IBM, HP (OMG 1995; Stal 1995).

Actually, CORBA and SORMA do share many concepts (which indeed gave
recently the inspiration to the terminology OR within SORMA). The Object Re-

SFB360–TR–96–3

3.4 CORBA 55

quest Broker (ORB) is responsible for the transmission of object requests and ex-
change of data. Supported communication paradigms are synchronous rpc, non-
returning (one-way) rpc, as well as deferred synchronous requests. The remotely
invoked objects are called Universal Networked Objects (UNO). A Dynamical
Skeleton Interface (DSI) denotes, what we would call the “proxy objects” on the
caller side. The transported data types are defined in an xdr-like language IDL
(Interface Definition Language). Objects are initialized static or dynamic (Dy-
namic Invocation Interface DII). Using two half-bridges on either side (stubs
in Fig. 1.6), two ORBs communicate by an Inter-ORB protocol, which is a tree
of possible and mandatory mechanisms to ship data between software products of
different vendors (IIO, GIOP, ESIOP, etc.)

Criteria for a Supercomponent

Orfali et al. (1994) give a interesting concept list of “added smarts”, which a com-
ponent should provide, in order to deserve the term “supercomponent”. Many of
the 16 items find already implementation and support in the SORMA framework:

Security – access control is not implemented yet; (non-secured) client iden-
tification and audit trails to CTRL call are provided;

Licensing and metering – not considered yet;

Versioning – CVS (Concurrent Version System) revision and compile infor-
mation is run-time accessible via the DBX method for each service class
(inherited by template);

Life cycle management – creation, aliasing, and destruction of a service ob-
ject is responsibility of the SOR-Manager. The SORM is on-line accessible
by its SO-interface (via himself);

Support for open tool palette – visual drag-and-drop assembly techniques are
available with NST/NEO (see Sec. 1.9.1);

Event notification – in a synchronous SOR scheme returning exception mes-
sages is well supported; Semi-autonomous processes may employ common
event signaling services (see Sec. 2.1.3)

Configuration and property management, scripting, metadata and introspec-
tion, ease-of-use, semantic messaging – well supported as discussed before;

Persistence – the state of a service object is usually loaded as defined by dic-
tionary entries. Saving of interactively modified state configuration normally

J. Walter and H. Ritter “SORMA”

56 Summary and Discussion

involves user text editing (help by clear-text dumping of internal states). The
class may implement direct saving.

Transaction control and locking – means serialized shared access, transaction
with two step commitments. no direct support yet (indirect by IPC stubs);

Relationship – SORMA supports the usual flat organization of SO by dy-
namic creation and association with other components. Additionally, local
objects can be owned by others (bypassing the repository and name binding),
see also Fig. 1.5

Self-testing – should be done at service object creation time;

Self-installing – (i) a service class must be registered at boot time to inform
the SO-plant about it. (ii) In a distributed network a service gets available
when the daemon is fired-up. This can be delegated to the standard Unix
“inetd” network daemon, triggered by a request to the port-mapper. The
daemon can be queried about its capabilities and state, currently no central
registry is defined. The “object bus” gets configured via file (see Sec. 1.4.3)

SORMA extends this concept list by

real-time efficiency (time-optimal invocation, symmetric local calls and pre-
specialization)

robustness

interactivity

in order to serve our specific demand in the domain of robotics.

In contrast to other robot control software frameworks like Chimera (Stewart
et al. 1992) or Psyche Marsh et al. (1992), SORMA does not attempt to serve as
a real-time operating system (OS) itself (e.g. it has no scheduler) Since we want to
have full portability also to high performance graphic workstations, which do have
their own OS, this attempt would not carry far.

Instead, the SORMA communication infrastructure facilitates to interoperate
hardware via the standard network, just like a decentralized multi-master Unix
field-bus system with a high level of portability, flexibility and re-usability.

SFB360–TR–96–3

3.5 Future Work 57

3.5 Future Work

An interesting line of future work arises from the idea of trading service object
request. At a central or decentralized market place, tasks are negotiated and traded
between multiple agents. This ansatz builds on the ability of matching and rank-
ing requests and resources on the base of e.g. attributes, prerequisites, availability,
latency times, and prices. For example, a very simple application is trading event
signal, i.e. specific messages and / or non-specific signals, like e.g. flash-light, beep,
text, speech production. More complex resource and task bidding and trading con-
cerns the actuation and the information acquisition using different resources, e.g.
visual and / or force and / or tactile sensory exploration procedures.

SORMA's interprocess communication (IPC) pays attention to full platform
independence and supports currently two main paradigms: (i) standard socket
based rpc protocol and the time-optimal path via (ii) System V shared memory,
which can be used as global shared memory across the network. We plan to ex-
tend this towards (i) asynchronous rpc, (ii) network transparent message passing,
(iii) remote semaphores, and (iv) , better DACS integration. Furthermore, we seek
(v) direct integration of the inter-bus S-bus / VME-bus communication, in order to
increase flexibility for the embedded controller in the dedicated robotics VME-
system (see Walter and Ritter 1996b).

J. Walter and H. Ritter “SORMA”

Appendix

SFB360–TR–96–3

Appendix 59

A: Textual Messages and the Dynamic String Concept

The SORMA concept requires good textual message support in two domains: (i) the
text conversion of the message transport data structure; (ii) the error propaga-
tion concept cares about understandable, detailed debug and exception messag-
ing (intra- as well as inter-process communication). The efficient string handling,
which supports cumulation of arbitrary short and long string messages is an impor-
tant requirement.

Here arises a data type conflict. A very fast and compact representation is
the standard string char*, where the termination of the text is indicated by a null-
character. All library function dealing with strings employ this notion. It does not
signal the length of the allocated memory. The usual remedy is to estimate the
maximal used string length and add a decent safety margin when programming
code using text. When unknown many text messages get appended, this procedure
is insufficient. The allocated memory and the string length must be reconsidered
and, in case, more memory space re-allocated before the strings are concatenated.

E.g. the textual oriented language Tcl solves this by defining a new data type
incorporating the allocated length and the buffer pointer. But this step requires,
that some – or all – the string processing function interfaces become redefined and
must be relearned. Regular strings must be converted to the particular structure,
before they are compatible.

Here, we suggest the dynamic string concept. It is type-equivalent to a regular
string. Therefore, all function interfaces expecting a string are compatible without
any extra effort.

The critical operation is the catenation of two strings. The fastest way is the
appending of the second to the first string, if there is enough pre-allocated memory
left. Any re-allocation costs extra time (copy, free) and should be avoided. There-
fore dynamic string concept knows about a reserved free space for the catenation,
named strDynCat().

The key idea is to encode the (minimal) allocated memory length in the length
of the string. The dynamic string concept defines a set of allowed memory lengths.
The strDynCat() the catenation operation makes sure, that the minimal memory
size is taken (from the set), which can contain the result string. From the string
length of the target dynamic string the left free space can be inferred. For SORMA
the chosen set of foreseen memory sizes are the multiples of a constant (). For
other applications a exponential growth model might be adequate (2).

The dynamic string catenation functionality (strDynCat) is an essential build-
ing block for efficiently solving the incremental text message handling with arbi-
trary sizes.

J. Walter and H. Ritter “SORMA”

Glossary

Architecture: “the art or science of building, including design, construction, and
often decorations; the character or style of building” (Webster)

Client – Server Model: The client process calls a procedure remotely at a server
process located somewhere in the network (see also RPC).

CO: Connection Object in SORMA, handled by the COMM

COMM: optional Connection Object Management Module in SORMA, see Sec. 1.4

CORBA: Common Object Request Management Broker Architecture, see Sec. 3.4

DACS: Distributed Application Communication System, see Sec. 1.9.2

Daemon: a program which waits to take a particular action, e.g. upon a client
request (see also client server model)

DLR: Deutsche Gesellschaft für Luft- und Raumfahrt; FTS by the group of Prof.
Hirzinger DLR Oberpfaffenhofen

EXEC/CTRL/DBX: indicate the execution, control, and debug method requests
to a SO, see Sec. 1.4.3

Field-bus: Using a single bus (containing a few wires) several distributed hard-
ware devices are connected, which are spread out in the “field” (also factory,
work cell, room, car etc.) It drastically reduces the numbers of required
wires to connect remote sensors, switches, actuators, lights, with their con-
trol and monitoring systems. This safes costs and effort for installation and
and maintenance (cable failures are easy to detect) and offers intelligent re-
configuration of the distributed system: new devices are hooked onto the bus
– the rest can be done by software.

FTS: 6 D Force Torque Sensor for measuring exerted forces (3D) and moments
(3D) between to mechanical parts. Here, in particular at the DLR wrist sen-
sor between the robot arm and multi-fingered TUM hand, more details in
(Walter and Ritter 1996b)

SFB360–TR–96–3

Glossary 61

GUI: Graphical User Interface with buttons, sliders and also complex widgets on
a computer screen

IP: the Internet Protocol is the network layer of TCP/IP. It provides the routing of
packets in the Internet, but needs higher level layers for reliable communi-
cation (retransmission etc., see TCP)

IPC: Inter-Process Communication using e.g. TCP/IP or Unix System V standard
resources, i.e. messages, semaphores, and shared memory, see Sec. 1.7

Migration support for SOs means, that changing the location of the service per-
forming process is possible with low effort (local time-optimal, remote pro-
tected, load balancing for several machines etc.), see also protected and time-
optimal invocation

NDR: Network Data Representation, alternative to XDR, e.g. by DACS or DCE
(Trademark Distributed Computing Environment by Open System Founda-
tion, OSF)

NST: Network Simulation Tool, see Sec. 1.1

OMG: Object Management Group, steering group for CORBA

OO: Object Oriented, see OOP

OOP: Object Oriented Programming, see Sec. 1.3.1

OS: the Operating System of a computer system

Protected invocation means, to invoke a component (method call) by a mecha-
nism, that a potential failure does not affect the caller in an uncontrollable
way. For instance, memory allocation bugs can exhibit very unpredictable
effects (cmp. time-optimal invocation)

Proxy SO: A service object which acts as a substitute for a local SO. It performs
by remote service invocation and by mirroring the interface including occur-
ing exception messages, see CO and Fig. 1.6.

PSOM Parameterized Self-Organizing Map, see (Walter 1996)

RCCL/RCI: Robot Command C Library and Robot Control Interface for syn-
chronous control via the SunOS workstation, more details in (Walter and
Ritter 1996b)

Real-time task is a task with time constraint specification, see Sec. 1.7.3

J. Walter and H. Ritter “SORMA”

62 Glossary

RPC: Remote Procedure Call, a standard TCP/IP protocol following the client /
server model.

SCOTT: Service COmmunicaTion Tool executable for interactive test, exploration
and usage of services in SORMA. In particular the command-line oriented
“scott” inspector and the Tcl/Tk oriented “scottwish” for easy generation
of GUIs.

Server: a system, here in particular a process, which provides service to clients,
see client/server and RPC. A server process is a daemon (here used through-
out, in order to distinguish server, service, and SO)

Service: a particular functionality provided by a piece of software, which may or
may not interface to special hardware devices or any other component. In
SORMA, the service is encapsulated in the SO:

SO: Service Object within SORMA, see Sec. 1.4

SOR: Service Object Request message in textual form (string converted transport
date structure)

SORM: Service Object Request Manager, see Sec. 1.4

SORMA: Service Object Request Management Architecture, see Sec. 1.4

Stub: program code which handles the communication with lower network layers,
see also RPC, TCP/IP, and Fig. 1.6

Tcl/Tk: A text-oriented, embeddable Command Language and Tool Kit (Ouster-
hout 1994)

TCP + UDP: Transmission Control Protocol (TCP) provides a session-based, re-
liable service for the delivery of sequenced packets across the internet. In
contrast the User Datagram Protocol (UDP) delivers datagrams fast but un-
reliable.

Threads: sometimes called light-weight processes, see Sec. 1.7

Time-optimal invocation means, to invoke a component with minimal overhead
and a speed which is close to a regular function call (cmp. protected invoca-
tion), see Sec. 1.7.3

TUM: Technische Universität München (TUM robot hand by the group of Prof.
Pfeiffer)

XDR: eXternal Data Representation for the machine independent encoding and
transmission of data across the network.

SFB360–TR–96–3

Glossary 63

Acknowledgments

Many thanks to the following contributors: Christof Dücker (robot arm control
and vision services), Gunther Heidemann (Datacube vision procedures), Hartmut
Holzgraefe (robot hand, PowerGlove, and SpaceMouse services), Ján Jockusch
(tactile fingertip sensor services and GUI), Nils Jungclaus (DACS bridge), Rüdiger
Kaatz (electronics), Michael Krause (Checkers player and TCl/Tk GUI), Robert
Kubisch (active camera head services and GUI), Dirk Selle (hand kinematics and
Checkers symbolic game algorithm), Bernd Sieker (voice samples, Tcl, video),
Patrick Ziemeck (Androx vision procedures).
This work was supported by the ministry for research and education of NRW.

J. Walter and H. Ritter “SORMA”

Bibliography

Allen, P., A. Timcenko, B. Yoshimi, and P. Michelman (1993). Automated track-
ing and grasping of a moving object with a robotic hand–eye system. IEEE
Trans. Robotics and Automation 9(2), 152–165. [stationary stereo camera].

Ballard, D. (1991). Animate vision. Artificial Intelligence 48(1), 57–86.

Bar-Shalom, Y. and T. Fortmann (1988). Tracking and Data Association. Aca-
demic Press, NY.

Beck, M., H. Böhme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Verworner
(1994). Linux Kernel Programmierung. Addison Wesley.

Bloomer, J. (1992). Power Programming with RPC. O'Reilly & Associates.

Booch, G. (1991). Object-Oriented Design With Applications. Ben-
jamin/Cummings, Redwood City, CA.

Brunner, B., K. Arbter, and G. Hirzinger (1994, September). Task directed pro-
gramming of sensor based robots. In Intelligent Robots and Systems (IROS-
94), pp. 1081–1087.

Brunner, B., K. Arbter, G. Hirzinger, and R. Koeppe (1995). Programming
robots via learning by showing in a virtual environment. In Virtual Reality
World '95, Stuttgart, Feb 21-23.

Brunner, B., K. Landzettel, B.-M. Steinmetz, and G. Hirzinger (1995). Telesen-
sorprogramming - a task-directed programming approach for sensor-based
space robots. In Int. Conf. on Advanced Robotics (ICAR), Sant Feliu de
Guixols, Spain, Sept 20-22.

Castano, A. and S. Hutchinson (1994). Visual compliance: Task-directed visual
servo control. IEEE Transactions on Robotics and Automation 10(3), 334–
341.

Coombs, D. and C. Brown (1993). Real-time binocular smooth persuit. Int. J. of
Computer Vision 11(2), 147–164.

Daniilidis, K., C. Krauss, M. Hansen, and G. Sommer (1995). Real time track-
ing of moving objects with an active camera. Technical report, CS Dept.

SFB360–TR–96–3

BIBLIOGRAPHY 65

Universität Kiel. Nr. 9509.

Dücker, C. (1995). Parametrisierte Bewegungsprimitive für ein Roboter–
Kraft/Momenten–Sensor Handsystem. Diplomarbeit, Technische Fakultät,
Universität Bielefeld.

Fink, G., N. Jungclaus, H. Ritter, and G. Sagerer (1995). A communica-
tion framework for heterogeneous distributed pattern analysis. In V. L.
Narasimhan (Ed.), International Conference on Algorithms and Applica-
tions for Parallel Processing, Brisbane, Australia, pp. 881–890. IEEE.

Fink, G. A., N. Jungclaus, F. Kummert, H. Ritter, and G. Sagerer (1996). A dis-
tributed system for integrated speech and image understanding. In Interna-
tional Symposium on Artifical Intelligence, Cancun, Mexico, pp. submitted.

Gengenbach, V. (1994). Einsatz von Rückkopplungen in der Bildauswertung bei
einem Hand-Auge-System zur automatischen Demontage. DISKI 72. Infix,
Sankt Augustin.

Grewal, M. and A. Andrews (1993). Kalman Filtering. Prentice Hall.

Hirzinger, G., B. Brunner, J. Dietrich, and J. Heindl (1994). ROTEX – the first
remotely conrolled robot in space. In Intern. Conf. on Robotics and Automa-
tion (San Diego), pp. 2604–2611. IEEE.

Jacobsen, I. and et al (1992). Object Oriented Software Engineering. ACM press
and Addison-Wesley.

Kubisch, R. (1995). Aktives Sehen mittels eines binokularen Kamerakopfes:
Ein Ansatz auf der Grundlage neuronaler Netze. Diplomarbeit, Technische
Fakultät, Universität Bielefeld.

Littmann, E., A. Meyering, J. Walter, T. Wengerek, and H. Ritter (1992). Neu-
ral networks for robotics. In K. Schuster (Ed.), Applications of Neural Net-
works, pp. 79–103. VCH Verlag Weinheim.

Marsh, B., C. Brown, T. LeBlanc, M. Scott, T. Becker, C. Quiroz, P. Das, and
J. Karlsson (1992, Feb). The rochester checkers player: Multimodel parallel
programming for animate vision. IEEE Computer 2, 12–19.

Murray, D. and A. Basu (1994). Motion tracking with an active camera. IEEE
Trans. on Pattern Analysis And Machine Intelligence 16(5), 449–459.

OMG (1995, July). The common object request broker: Architecture and
specification. Specification revision 2.0, Object Management Group,
http://www.omg.org/.

Orfali, R., D. Harkey, and J. Edwards (1994). The Essential Distributed Objects
Survival Guide. John Wiley & Sons.

J. Walter and H. Ritter “SORMA”

66 BIBLIOGRAPHY

Ousterhout, J. K. (1994). Tcl and the Tk Toolkit. Addison-Wesley.

Papanikolopoulos, N., P. Khosla, and T. Kanade (1993). Visual tracking of a
moving target by a camera on a robot. IEEE Trans. Robotics and Automa-
tion RA-9(1), 14–31.

Ritter, H. (1995). NST tutorial, NST reference manual, NST in 8+ pages. In-
stitut für Neuroinformatik, Universität Bielefeld.

Ritter, H. (1996). Neural network Simulation Tool (nst). Technical Report
SFB360-TR-96-5, Universität Bielefeld, D-33615 Bielefeld. (in prepara-
tion).

Stal, M. (1995). Der Zug rollt weiter. iX 5, 160–168.

Stewart, D. B., D. E. Schmitz, and P. K. Khosla (1992). The Chimera II real-
time operating system for advanced sensor-based control applications. IEEE
Trans. on System, Man, and Cybernetics 22(6), 1282–1295.

van der Smagt, P. (1995). Visual Guidance using Neural Networks. Ph. D. thesis,
University of Amsterdam.

Walter, J. (1991). Visuo-motorische Koordination eines Industrieroboters und
Vorhersage chaotischer Zeitserien: Zwei Anwendungen selbstlernenden
neuronalen Algorithmen. Diplomarbeit, Physik Department der Technische
Universität München.

Walter, J., T. Martinetz, and K. Schulten (1991, June). Industrial robot learns
visuo-motor coordination by means of the “neural-gas” network. In Proc.
Int. Conf. Artificial Neural Networks (ICANN), Espoo Finland, Volume 1,
pp. 357–364. Elsevier, New York.

Walter, J. and H. Ritter (1996a). Associative completion and investment learning
using PSOMs. In M. C. v.d. S. W. v. J. Vorbrüggen, and B. Sendhoff (Eds.),
Artificial Neural Networks – Proc. Int. Conf. ICANN 96, July Bochum, Lec-
ture Notes in Computer Science 1112, pp. 157–164. Springer.

Walter, J. and H. Ritter (1996b). The ni robotics laboratory. Technical Report
SFB360-TR-96-4, TF-AG-NI, Universität Bielefeld, D-33615 Bielefeld.

Walter, J. and H. Ritter (1996c). SORMA: Interoperating distributed robotics
hardware. In Proc. Int. Conf. on Robotics and Automation (ICRA-97), pp.
(submitted).

Walter, J. and K. Schulten (1993). Implementation of self-organizing neural net-
works for visuo-motor control of an industrial robot. IEEE Transactions in
Neural Networks 4(1), 86–95.

SFB360–TR–96–3

BIBLIOGRAPHY 67

Walter, J. A. (1996). Rapid Learning in Robotics. , Technische Fakultät, Uni-
versität Bielefeld. http://www.techfak.uni-bielefeld.de/ walter/pub/.

J. Walter and H. Ritter “SORMA”

