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Association rule mining [1] is a prominent data-mining method used in 

many domains. Despite the fact that most large datasets are collected over 
longer time spans, the considered systems are in most cases assumed 
stationary, which leads to complete ignorance of temporal effects. 

In this contribution we present statistical and discretization techniques of 
partitioning the data recording time into intervals where the considered 
association rules remain homogeneous with respect to their support and 
confidence. In contrast with previous work where the considered time 
intervals are fixed they are determined in a data driven manner, which 
introduces a problem of optimal time granularity [2].   

Furthermore, we demonstrate applicability of the risk-adjusted quality 
assessment in medical domain, specifically as it relates to heart surgery. For 
example, in comparison with the Euroscore risk system [3] the outcome 
prediction models for duration of intensive care or mortality can be 
significantly enhanced. Interesting pattern changes can be identified and 
assigned to systematical and organizational modifications of the considered 
system. 
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Introduction 
The objective of data mining is to find interesting and useful knowledge 

hidden in databases.  A prominent technique is association rule mining which 
aims at finding comprehensible rules to describe regularities. In the past few 
years a large number of algorithms were proposed and tested in various 
domains.  Despite the fact, that most large datasets are collected over a long 
time period the stationary of the considered system is assumed and temporal 
effects on the behavior are rarely captured, see e.g. [2].  In this paper we 
introduce a combination of statistical, discretization and association rule 
techniques in order to systematically analyze temporal effects. 

Standard association rule mining is commonly stated as follows [1]: Let 
I={ii, ..., in} be as set of items, and D be a set of records.  Each record consists 
of a subset of items in I.  An association rule is an implication of the form X 
→ Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅.  The set X is often termed 
antecedents and Y consequence.  The rule X → Y holds in D with confidence c 
if c% of records in D that support X also support Y.  The rule has support s in 
D if s% of records in D contains X ∪ Y.  Given a set of records D,  the 
problem of mining association rules is to discover all rules that have support 
and confidences greater than the user-specified minimum support and 
minimum confidence. 

In previously suggested techniques (e.g. in [2]) the dataset is first 
partitioned into sub-datasets Di corresponding to manually chosen time 
periods in which they were collected (e.g. month, years, etc.) and the rules are 
mined.  For rules that appear not in all Di the missing support and confidence 
information is obtained in certain time periods.  A rule is classified as a stable 
rule if none of its confidences (or supports)  in the time periods is below the 
minimum confidence (or the minimum support) and the confidences (or 
supports) over time do not, i.e., they are homogeneous respective a Chi-
Square test (see Table 1).  The aim of rule reduction is achieved by presenting 
only stable rules which can be trusted in the future to the user.  This method 
however, has two major shortcomings: the granularity of the time periods has 
to be manually specified depending on the application domain and for 
classification purposes potentially useful unstable rules are discarded. 

 
 time period T1 time period T2 Row total 
satisfy X ∧ Y N11 N12 N11 + N12 
satisfy X ∧ ¬Y N21 N22 N21 + N22 
Column total N11 + N21 N12 + N22  

Table 1: confidence stability tests based on a contingency table for the 
rule X → Y in the two time periods T1 and T2 
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In this paper we argue, that an important improvement for rule 
classification systems based on historically grown datasets can be achieved, if 
the rule variability over time is systematically estimated and employed in the 
classification model. 

Our experimental results are based on a research database in heart surgery.  
Heart operations are the most frequent realized surgeries in Europe and North 
America. The main surgery indication is summarized as cardiovascular 
disease (CVD) which includes coronary heart disease, high blood pressure, 
atherosclerosis, and stroke.  CVD is an  important research topic since it 
causes nearly half of all deaths in Europe [12].   

The Clinic for Cardiothoracic Surgery of the Heart Institute Lahr is a 
highly specialized hospital and performs about 2000 open heart operations per 
year.  For historical reasons the Heart Institute choose to operate independent 
clinical information systems (HIS) since its beginning in 1995.  A data mart 
system integrates all relevant current and historical data from several 
disconnected HIS operated by autonomous departments.  The transformation 
from HIS to target data base is done with carefully designed rules in tight 
cooperation with domain experts.  For example the attribute left ventricle 
ejection fraction is gained from 7 different source values .  Due to the 
historical changes in the source data base structures (caused by software 
updates, report form changes, variation in the physician team, etc) the 
explanatory power of certain parameters differs over the time they were 
collected.  For example the correlation of a certain risk factor with 
postoperative mortality is higher in some time periods and significant lower in 
others.  Other common sources of variation over time in the medical domain 
are the learning effect, i.e., the experience of the health professionals [4], and 
the enhancements of techniques in diagnosis and therapy [5].  Up to now, data 
from more than 13.000 heart operations with 277 pre-, intra- or postoperative 
attributes per case are available for multiple purposes.  

In the following we will describe the used methods, report the significant 
performance improvements for the classification of postoperative outcomes in 
the result section and discuss the retrospective assignment of changes in 
organization and staff structure based on the temporal analysis. 

Methods 
 
In general the estimation of time periods can be traded as a binary 

discretization problem of a continuous attribute.  Here a set of records D with 
k classes C1, ..., Ck has to be partitioned into the subsets D1 and D2 according 
to a threshold value T of a continuous-valued attribute A.  Previously 
suggested discretization methods can be classified into global vs. local, 
supervised vs. unsupervised, and static vs. dynamic approaches; see [6] for a 
good overview.  In this work we used global, supervised and static 
discretization algorithms for a two class problem: all records which 
accomplish the rule (satisfy X ∧ Y) belongs to class one and the others where 
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only the antecedent and not the consequence is present (satisfy X ∧ ¬Y) fall 
in class two.  With this approach we can employ the well known evaluation 
functions (reported compactly below) for the discretization of continuous-
valued attributes. 

Independent of the algorithmic strategy that is used for partitioning it is 
important to ensure that obviously "bad" partitions, i.e., a sequence of records 
belonging to a single class should not be broken apart, are not selected by the 
evaluation function [7].  Fayyad and Irani [8] defined the concept of a 
boundary point: A value T in the range A is a boundary point if in the 
sequence of records sorted by the value of A, there exist two records r1, r2 ∈ 
D, having different classes, such that A(r1) < T < A(r2); and there exists no 
other example r’ ∈ D such that A(r1) < A(r’) < A(r2).  In other words, a 
threshold value that separates two successive records that all belong to the 
same class is not a boundary point. 

In the following we briefly introduce five evaluation functions for finding 
optimal split points.  Of course only boundary points are candidate values.  
Note that simple blockwise dataset partitioning does not ensure selection of 
meaningful boundary points. 

 
1.  The class information entropy E(A,T;D) of a set D partitioned into 

two sets D1 and D2 induced by threshold value T of the continuous-valued 
attribute A is the weighted average of their resulting class entropies: 
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A binary partition for D is determined by selecting the boundary point TA for 
which E(A,TA;D) is minimal along all the boundary points.  Based on the 
Minimum Description Length Principle a partition induced by a boundary 
point is accepted or rejected otherwise; for details see [8]. 
 

2.  The gain ratio criterion [9] assesses the desirability of a partition as 
the ratio of its information gain Gain(D, T) to its split information Split(D, T): 
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3.  The Contrast-Entropy criterion CE [10] favors partitions with high 
contrast by maximizing of the Euclidean distance between two partitions and 
minimizing the distance of the elements within each of them and low entropy.  
With the mean value mi for the continuous-valued attribute A in the partition 
Di it is defined by: 
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4.  At the Chi-Square method a contingency table (see Table 1) is built 
for each boundary point.  The partitioning with the highest significance level 
(tested with Chi-Square) is chosen. 

 
5.  The Kolmogorov-Smirnov statistic is principally used to compare 

two cumulative distribution functions based on the maximal absolute 
difference Dmax between them.  A significance level (null hypothesis imply 
that the distributions are the same) can be computed. At our two-class 
problem (X ∧ Y vs. X ∧ ¬Y) we induce a partition at Dmax. 

 
All proposed methods can be used in a recursive manner: beginning with 

all records where X ∧ Y or X ∧ ¬Y is present the best binary partitioning 
according to the value of the evaluation function is chosen. Subsequently the 
resulting partitions are analyzed until a stopping criterion (e.g. minimum 
significance level or number of partitions) is reached. 

The resulting partitioning of a rule X → Y can be used for the 
retrospective improvement of the classification performance on Y.  This is 
crucial if like in our case surgical quality assessments (e.g. postoperative 
mortality as consequence) are done.  In general association rules may be used 
for classification purposes in the following way: for each antecedent X an 
attribute which satisfy X is generated and entered in the classification model.  
To introduce the partitioning in the model each attribute is split into new 
attributes according to the found partitions, i.e., for each partition a new 
attribute is generated.  The area under the receiver operating characteristic 
(ROC) curve (see [11] for a detailed description) was used to measure the 
discrimination power of the underlying quality assessment model. 

Assessing the quality of cardiac surgical care through inter-hospital and 
inter-surgeons comparison of mortality rates and complications after cardiac 
surgery is of increasing importance.  One of the established risk score systems 
for postoperative mortality in Europe is the European System for Cardiac 
Operative Risk Evaluation (EuroSCORE) [3].  The data mart database has 
enabled us to apply the EuroSCORE retrospectively in the Heart Institute in 
75% of all cases even though most of the parameters are never collected in a 
way that comply the exact definitions in [3].  In this study we could analyze 
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8758 cases, where 181 died and 777 had a prolonged stay in the intensive care 
unit (ICU).  To get comparable classification results with the original study in 
[3] we used the stepwise logistic regression as risk model.  Beside 
postoperative mortality as outcome we examined also the classification of an 
prolonged stay in ICU. 

To inspect the temporal variation of the correlation between the risk 
factors with postoperative outcomes we focussed on rules with one antecedent 
and one consequence, i.e., rules in the from EuroSCORE parameter → 
postoperative outcome. 

Results 
The resulting partitioning of each risk parameter were introduced in the 

model as described in the method section.  As shown in Table 2 the best 
discrimination power of the different models were achieved by using the 
Kolmogorov-Smirnov statistic.  For both outcomes the classification results 
are clearly better with the additionally usage of the found partitions in the 
particular risk model.  A significant improvement was achieved for the 
prolonged stay in ICU.  Figure 1 visualize found time intervals where rule 
confidences differ. 

 
Model Area under ROC with 95% 

confidence interval 
Mortality 0.771 (0.736 - 0.806) 
Extended model for Mortality 0.782 (0.746 - 0.817) 
ICU stay > 7d 0.738 (0.720 - 0.757) 
Extended model for ICU stay > 7d 0.760 (0.743 - 0.788) 

Table 2: Discrimination power of the logistic regression models. 

Furthermore the analysis of time variations in association rules allows the 
identification of temporal irregularities in data collection. Figure 2 show, that 
significant fewer recent myocardial infarcts were diagnosed in the Heart 
Institute since November 1997.  A subsequent review revealed that a reporting 
procedure was modified at that time which results in an imprecise recording of 
this attribute.  Actions will be taken in the Heart Institute to get this value 
from other sources. 
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Figure 1: Resulting time segments for six attributes which correlate 
with an ICU stay longer than 7 days.  The color coding indicates the 
confidences of the particular rules in different time segments such that as 
darker a time interval appears, the stronger the association.  Note that 
the segments obviously do not correspond to year segments and our 
approach avoid the granularity problem of finer segments. 

 

 

Figure 2: Cumulative sum of high risk cases which are marked having 
recent myocardial infarct and cases which additionally died within 30 
days after operation. 

Discussion 
In medicine well known factors which influence clinical practice and 

contributing to outcome are experience of the individual staff members, work 
environment, organization and management factors [13].  Beside the 
improvement of quality assessment it is valuable to identify causes of 
temporal performance changes.  On the basis of the temporal analysis of the 
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EuroSCORE risk factors we were able to assign changes in organization and 
staff structure to postoperative outcomes.  The following two examples for 
postoperative mortality (pulmonary pressure and ejection fraction) shall 
illustrate the procedure. 

Severely elevated systolic pulmonary pressure usually developed in 
patients with long existing heart failure caused in most cases by heart valve 
disease over long years.  The postoperative care on these high risk patients on 
ICU demands an extraordinary experience of  the health professionals because 
slight treatment failures can cause fatal events.  A similar situation concerns 
patients with reduced ejection fraction where the ability of the heart muscle to 
eject blood is impaired.  In the beginning of 2002 the cardiosurgical 
department of the heart institute, especially the ICU team, experienced 
significant changes in staff and management.  As shown in Figure 3 the 
conditional mortality rates for reduced ejection fraction is increasing since the 
ICU reorganization.  Actions were taken including the ICU staff (e.g. the 
engagement of two new specialists for intensive care medicine), 
organizational and management changes and resulted in regaining good 
performance since beginning of 2003.   

The elevated mortality rates on reduced ejection fraction and high 
pulmonary pressure since the end of March in 2000 and middle of June in 
2000 (see Figure 3 and 4) correlates with the discharge of an experienced 
surgeon who was specialized on high risk patients, i.e., from this time the 
other partly less experienced surgeons took over these cases. 

Since end of 1997 the operations performed per day increased, but the 
capacity of the ICU was extended not until the end of 2000.  As shown in 
Figure 1 this leads to an early discharge between 1998 and 2000 in other 
clinics even in high risk patients (those with emergency operation or elevated 
systolic pulmonary pressure).  Since end of 2000 a longer medical care of 
severe illness patients in the Heart Institute is possible again. 

These three examples show, that a retrospective temporal analysis can 
gain new insights in correlation between organizational aspects and 
postoperative outcomes which were not recognized before.  Although there 
were presumptions about temporal performance variations (e.g. consequences 
results from the discharge of the most experienced surgeon) but for the first 
time the changes were analyzed systematically.  Indeed for some observed 
correlation a plausible cause could not be identified yet. 

Comparative studies with more historical grown real-life datasets and 
synthetic data to investigate the specific behavior of evaluation functions for 
partitioning the time dimension are planned. 
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Figure 3: Left ventricle ejection fraction and conditional mortality 
over time.  The elevated mortality rate after ICU reorganization in the 
beginning of 2002  is conspicuous identifiable. The increase since April 
2000 correlates with the discharge of an experienced surgeon. 

 

Figure 4: Elevated systolic pulmonary pressure and conditional 
mortality over time.  Like above the increase in June 2000 correlates with 
the discharge of an experienced surgeon. 
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